Skip to main content
Log in

Large Deviations for Random Trees and the Branching of RNA Secondary Structures

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We give a Large Deviation Principle (LDP) with explicit rate function for the distribution of vertex degrees in plane trees, a combinatorial model of RNA secondary structures. We calculate the typical degree distributions based on nearest neighbor free energies, and compare our results with the branching configurations found in two sets of large RNA secondary structures. We find substantial agreement overall, with some interesting deviations which merit further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakhtin, Y., Heitsch, C.E., 2008. Large deviations for random trees. J. Stat. Phys. 132(3), 551–560.

    Article  MATH  MathSciNet  Google Scholar 

  • Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D’Souza, L.M., Du, Y., Feng, B., Lin, N., Madabusi, L.V., Müller, K.M., Pande, N., Shang, Z., Yu, N., Gutell, R.R., 2002. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform. 3(1).

  • Clote, P., Gasieniec, L., Kolpakov, R., Kranakis, E., Krizanc, D., 2005. On realizing shapes in the theory of RNA neutral networks. J. Theor. Biol. 236(2), 216–227.

    Article  MathSciNet  Google Scholar 

  • Clote, P., Kranakis, E., Krizanc, D., Stacho, L., 2007. Asymptotic expected number of base pairs in optimal secondary structure for random RNA using the Nussinov–Jacobson energy model. Discrete Appl. Math. 155(6–7), 759–787.

    Article  MATH  MathSciNet  Google Scholar 

  • Dembo, A., Zeitouni, O., 1998. Large deviations techniques and applications, volume 38 of Applications of Mathematics, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • Doshi, K.J., Cannone, J.J., Cobaugh, C.W., Gutell, R.R., 2004 Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinform. 5(105).

  • Ellis, R.S., 2006. Entropy, large deviations, and statistical mechanics. In: Classics in Mathematics. Springer, Berlin. Reprint of the 1985 original.

    Google Scholar 

  • Fields, D.S., Gutell, R.R., 1996. An analysis of large rRNA sequences folded by a thermodynamic method. Fold Des. 1(6), 419–430.

    Article  Google Scholar 

  • Fontana, W., Konings, D., Stadler, P.F., Schuster, P., 1993. Statistics of RNA secondary structures. Biopolymers 33(9), 1389–1404.

    Article  Google Scholar 

  • Heitsch, C.E., 2008a. Combinatorial insights into RNA secondary structures. In preparation.

  • Heitsch, C.E., 2008b. A new metric on plane trees and RNA configurations. In revision.

  • Hofacker, I.L., Schuster, P., Stadler, P.F., 1998. Combinatorics of RNA secondary structures. Discrete Appl. Math. 88(1–3), 207–237.

    Article  MATH  MathSciNet  Google Scholar 

  • Konings, D.A.M., Gutell, R.R., 1995. A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. RNA 1(6), 559–574.

    Google Scholar 

  • Lu, Z.J., Turner, D.H., Mathews, D.H., 2006. A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation. Nucleic Acids Res 34(17), 4912–4924.

    Article  Google Scholar 

  • Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H., 1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940.

    Article  Google Scholar 

  • Miklós, I., Meyer, I.M., Nagy, B., 2005. Moments of the Boltzmann distribution for RNA secondary structures. Bull. Math. Biol. 67(5), 1031–1047.

    Article  MathSciNet  Google Scholar 

  • Nebel, M.E., 2004a. Identifying good predictions of RNA secondary structure. In Pac. Symp. Biocomput., 423–434.

  • Nebel, M.E., 2004b. Investigation of the Bernoulli model for RNA secondary structures. Bull. Math. Biol. 66(5), 925–964.

    Article  MathSciNet  Google Scholar 

  • Palmenberg, A.C., Sgro, J.-Y., 1997. Topological organization of picornaviral genomes: Statistical prediction of RNA structural signals. S. Virol. 8, 231–241.

    Article  Google Scholar 

  • Rivas, E., Eddy, S.R., 2000. Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16(7), 583–605.

    Article  Google Scholar 

  • Stanley, R.P., 1999. Enumerative Combinatorics. Vol. 2, Vol. 62. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Tinoco, I. Jr., Bustamante, C., 1999. How RNA folds. J. Mol. Biol. 293(2), 271–281.

    Article  Google Scholar 

  • Workman, C., Krogh, A., 1999. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. Nucleic Acids Res. 27(24), 4816–4822.

    Article  Google Scholar 

  • Wuchty, S., Fontana, W., Hofacker, I.L., Schuster, P., 1999. Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49(2), 145–165.

    Article  Google Scholar 

  • Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415.

    Article  Google Scholar 

  • Zuker, M., Jacobson, A.B., 1995. “Well-determined” regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA. Nucleic Acids Res. 23(14), 2791–2798.

    Article  Google Scholar 

  • Zuker, M., Jaeger, J.A., Turner, D.H., 1991. A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res. 19(10), 2707–2714.

    Article  Google Scholar 

  • Zuker, M., Mathews, D., Turner, D., 1999. Algorithms and thermodynamics for RNA secondary structure prediction: A practical guide. In: Barciszewski, J., Clark, B. (Eds.), RNA Biochemistry and Biotechnology, NATO ASI Series, pp. 11–43. Kluwer Academic, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Heitsch.

Additional information

Y. Bakhtin partially supported by NSF CAREER DMS-0742424. C.E. Heitsch partially supported by a BWF CASI and NIH NIGMS R01 GM083621.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtin, Y., Heitsch, C.E. Large Deviations for Random Trees and the Branching of RNA Secondary Structures. Bull. Math. Biol. 71, 84–106 (2009). https://doi.org/10.1007/s11538-008-9353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9353-y

Keywords

Navigation