Skip to main content

The Role of GPR55 in Bone Biology

  • Chapter
  • First Online:
endoCANNABINOIDS

Part of the book series: The Receptors ((REC,volume 24))

  • 1303 Accesses

Abstract

A novel and necessary role for GPR55 in bone physiology was demonstrated by Whyte et al. (Proc Natl Acad Sci 106(38):16551–16516, 2009). This chapter aims to summarise the work that became the first study to demonstrate a non-neuronal physiological role for GPR55 in vivo. In summary, male mice lacking GPR55 develop a high bone mass phenotype due to impairment in osteoclast function—consistent with GPR55 agonists O-1602 and LPI stimulating osteoclast function. These studies advocate the development of GPR55 antagonists for the treatment of diseases associated with excessive osteoclast activity such as osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alliston T, Derynck R (2002) Medicine: interfering with bone remodelling. Nature 416:686–687. doi:10.1038/416686a

    Article  PubMed  CAS  Google Scholar 

  • Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER et al (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179. doi:10.1038/36593

    Article  PubMed  CAS  Google Scholar 

  • Arron JR, Choi Y (2000) Osteoimmunology: bone versus immune system. Nature 408:535–536

    Article  PubMed  CAS  Google Scholar 

  • Baker D, Pryce G, Davies WL, Hiley CR (2006) In silico patent searching reveals a new cannabinoid receptor. Trends Pharmacol Sci 27:1–4. doi:10.1016/j.tips.2005.11.003

    Article  PubMed  CAS  Google Scholar 

  • Begg M, Pacher P, Batkai S, Osei-Hyiaman D, Offertaler L, Mo FM et al (2005) Evidence for novel cannabinoid receptors. [review] [116 refs]. Pharmacol Ther 106:133–145

    Article  PubMed  CAS  Google Scholar 

  • Besbas N, Draaken M, Ludwig M, Deren O, Orhan D, Bilginer Y et al (2009) A novel CLCN7 mutation resulting in a most severe form of autosomal recessive osteopetrosis. Eur J Pediatr 168(12):1449–1454. doi:10.1007/s00431-009-0945-9

    Article  PubMed  CAS  Google Scholar 

  • Bilezikian J (2008) Combination anabolic and antiresorptive therapy for osteoporosis: opening the anabolic window. Curr Osteoporos Rep 6:24–30

    Article  PubMed  Google Scholar 

  • Blair HC (1998) How the osteoclast degrades bone. Bioessays 20:837–846

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL (1986) Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol 102:1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Bondarenko A, Waldeck-Weiermair M, Naghdi S, Poteser M, Malli R, Graier WF (2010) GPR55-dependent and -independent ion signaling in response to lysophosphatidylinositol in endothelial cells. Br J Pharmacol 161:308–320. doi:10.1111/j.1476-5381.2010.00744.x

    Article  PubMed  CAS  Google Scholar 

  • Boonen S, Vanderschueren D, Venken K, Milisen K, Delforge M, Haentjens P (2008) Recent developments in the management of postmenopausal osteoporosis with bisphosphonates: enhanced efficacy by enhanced compliance. J Intern Med 264:315–332. doi:10.1111/j.1365-2796.2008.02010.x

    Article  PubMed  CAS  Google Scholar 

  • Borthwick KJ, Kandemir N, Topaloglu R, Kornak U, Bakkaloglu A, Yordam N et al (2003) A phenocopy of CAII deficiency: a novel genetic explanation for inherited infantile osteopetrosis with distal renal tubular acidosis. J Med Genet 40:115–121

    Article  PubMed  CAS  Google Scholar 

  • Bosier B, Hermans E (2007) Versatility of GPCR recognition by drugs: from biological implications to therapeutic relevance. Trends Pharmacol Sci 28:438–446

    Article  PubMed  CAS  Google Scholar 

  • Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157:1291–1300. doi:10.1111/j.1476-5381.2009.00305.x

    Article  PubMed  CAS  Google Scholar 

  • Brown AJ (2007) Novel cannabinoid receptors. Br J Pharmacol 152:567–575. doi:10.1038/sj.bjp.0707481

    Article  PubMed  CAS  Google Scholar 

  • Busch L, Sterin-Borda L, Borda E (2006) Effects of castration on cannabinoid CB1 receptor expression and on the biological actions of cannabinoid in the parotid gland. Clin Exp Pharmacol Physiol 33:258–263

    Article  PubMed  CAS  Google Scholar 

  • Chan GK, Miao D, Deckelbaum R, Bolivar I, Karaplis A, Goltzman D (2003) Parathyroid ­hormone-related peptide interacts with bone morphogenetic protein 2 to increase osteoblastogenesis and decrease adipogenesis in pluripotent C3H10T 1/2 mesenchymal cells. Endocrinology 144:5511–5520. doi:10.1210/en.2003-0273

    Article  PubMed  CAS  Google Scholar 

  • Chellaiah MA (2005) Regulation of actin ring formation by rho GTPases in osteoclasts. J Biol Chem 280:32930–32943

    Article  PubMed  CAS  Google Scholar 

  • Chellaiah MA (2006) Regulation of podosomes by integrin alphavbeta3 and Rho GTPase-facilitated phosphoinositide signaling. Eur J Cell Biol 85:311–317

    Article  PubMed  CAS  Google Scholar 

  • Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D et al (2000) Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem 275:11993–12002

    Article  PubMed  CAS  Google Scholar 

  • Clines GA, Guise TA (2008) Molecular mechanisms and treatment of bone metastasis. Expert Rev Mol Med 10:e7. doi:10.1017/S1462399408000616

    Article  PubMed  Google Scholar 

  • Compston JE (2001) Sex steroids and bone. Physiol Rev 81:419–447

    PubMed  CAS  Google Scholar 

  • Compston J (2009) Clinical and therapeutic aspects of osteoporosis. Eur J Radiol 71(3):388–391. doi:10.1016/j.ejrad.2008.04.063

    Article  PubMed  Google Scholar 

  • Cooper MS (2009) The system of 11β-hydroxysteroid dehydrogenases: relevance to inflammatory bone loss. Bone 45:S123. doi:10.1016/j.bone.2009.07.026

    Article  Google Scholar 

  • Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidates for the mechanosensory system in bone. J Biomech Eng 113:191–197

    Article  PubMed  CAS  Google Scholar 

  • Coxon FP, Thompson K, Rogers MJ (2006) Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol 6:307–312. doi:10.1016/j.coph.2006.03.005

    Article  PubMed  CAS  Google Scholar 

  • De Leenheer E, Mueller GS, Vanderkerken K, Croucher PI (2004) Evidence of a role for RANKL in the development of myeloma bone disease. Curr Opin Pharmacol 4:340–346. doi:10.1016/j.coph.2004.03.011

    Article  PubMed  CAS  Google Scholar 

  • Del Fattore A, Fornari R, Van Wesenbeeck L, de Freitas F, Timmermans JP, Peruzzi B et al (2008a) A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res 23:380–391. doi:10.1359/jbmr.071107

    Article  PubMed  Google Scholar 

  • Del Fattore A, Teti A, Rucci N (2008b) Osteoclast receptors and signaling. Arch Biochem Biophys 473:147–160. doi:10.1016/j.abb.2008.01.011

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z et al (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825. doi:10.1038/35071088

    Article  PubMed  Google Scholar 

  • Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  PubMed  CAS  Google Scholar 

  • Dubrow SA, Hruby PM, Akhter MP (2007) Gender specific LRP5 influences on trabecular bone structure and strength. J Musculoskelet Neuronal Interact 7:166–173

    PubMed  CAS  Google Scholar 

  • Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  PubMed  CAS  Google Scholar 

  • Duong LT, Lakkakorpi P, Nakamura I, Rodan GA (2000) Integrins and signaling in osteoclast function. Matrix Biol 19:97–105

    Article  PubMed  CAS  Google Scholar 

  • Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520. doi:10.1038/nature03398

    Article  PubMed  CAS  Google Scholar 

  • Epstein S (2006) Update of current therapeutic options for the treatment of postmenopausal osteoporosis. Clin Ther 28:151–173. doi:10.1016/j.clinthera.2006.02.007

    Article  PubMed  CAS  Google Scholar 

  • Falasca M, Corda D (1994) Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras-transformed epithelial cells. Eur J Biochem 221:383–389

    Article  PubMed  CAS  Google Scholar 

  • Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    Article  PubMed  CAS  Google Scholar 

  • Fisher JE, Caulfield MP, Sato M, Quartuccio HA, Gould RJ, Garsky VM et al (1993) Inhibition of osteoclastic bone resorption in vivo by echistatin, an “arginyl-glycyl-aspartyl” (RGD)-containing protein. Endocrinology 132:1411–1413

    Article  PubMed  CAS  Google Scholar 

  • Ford LA, Roelofs AJ, Anavi-Goffer S, Mowat L, Simpson DG, Irving AJ et al (2010) A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. Br J Pharmacol 160:762–771. doi:10.1111/j.1476-5381.2010.00743.x

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JC (2008) Advances in bone biology and new treatments for bone loss. Maturitas 60:65–69. doi:10.1016/j.maturitas.2008.04.005

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X et al (2007) IFN-Îł stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117:122–132

    Article  PubMed  CAS  Google Scholar 

  • Gianni W, Ricci A, Gazzaniga P, Brama M, Pietropaolo M, Votano S et al (2004) Raloxifene modulates interleukin-6 and tumor necrosis factor-{alpha} synthesis in vivo: results from a Pilot Clinical Study. J Clin Endocrinol Metab 89:6097–6099. doi:10.1210/jc.2004-0795

    Article  PubMed  CAS  Google Scholar 

  • Gingery A, Bradley E, Shaw A, Oursler MJ (2003) Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival. J Cell Biochem 89:165–179. doi:10.1002/jcb.10503

    Article  PubMed  CAS  Google Scholar 

  • Glass DA II, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H et al (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764. doi:10.1016/j.devcel.2005.02.017

    Article  PubMed  CAS  Google Scholar 

  • Gowen M, Stroup GB, Dodds RA, James IE, Votta BJ, Smith BR et al (2000) Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Invest 105:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Grey A (2007) Emerging pharmacologic therapies for osteoporosis. Expert Opin Emerg Drugs 12:493–508

    Article  PubMed  CAS  Google Scholar 

  • Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A et al (2008) Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet 83:64–76. doi:10.1016/j.ajhg.2008.06.015

    Article  PubMed  CAS  Google Scholar 

  • GuimarĂŁes VMC, Zuardi AW, Del Bel EA, GuimarĂŁes FS (2004) Cannabidiol increases Fos expression in the nucleus accumbens but not in the dorsal striatum. Life Sci 75:633–638

    Article  PubMed  CAS  Google Scholar 

  • Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG et al (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280:2112–2114

    Article  PubMed  CAS  Google Scholar 

  • Helfrich MH, Hocking LJ (2008) Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys 473:172–182. doi:10.1016/j.abb.2008.02.045

    Article  PubMed  CAS  Google Scholar 

  • Helfrich MH, Nesbitt SA, Dorey EL, Horton MA (1992) Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a beta 3 integrin. J Bone Miner Res 7:335–343

    Article  PubMed  CAS  Google Scholar 

  • Helfrich MH, Nesbitt SA, Lakkakorpi PT, Barnes MJ, Bodary SC, Shankar G et al (1996) β1 integrins and osteoclast function: involvement in collagen recognition and bone resorption. Bone 19:317–328. doi:10.1016/S8756-3282(96)00223-2

    Article  PubMed  CAS  Google Scholar 

  • Helms WS, Jeffrey JL, Holmes DA, Townsend MB, Clipstone NA, Su L (2007) Modulation of NFAT-dependent gene expression by the RhoA signaling pathway in T cells. J Leukoc Biol 82:361–369. doi:10.1189/jlb.0206120

    Article  PubMed  CAS  Google Scholar 

  • Henstridge CM, Balenga NA, Ford LA, Ross RA, Waldhoer M, Irving AJ (2009) The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 23:183–193. doi:10.1096/fj.08-108670

    Article  PubMed  CAS  Google Scholar 

  • Henstridge CM, Balenga NA, Kargl J, Andradas C, Brown AJ, Irving A et al (2011) Minireview: recent developments in the physiology and pathology of the lysophosphatidylinositol-sensitive receptor GPR55. Mol Endocrinol 25:1835–1848. doi:10.1210/me.2011-1197

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Hoeppner LH, Secreto FJ, Westendorf JJ (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 13:485–496

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL (1999) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140:4367–4370

    Article  PubMed  CAS  Google Scholar 

  • Idris AI, van’t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA et al (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779

    Article  PubMed  CAS  Google Scholar 

  • Idris AI, Sophocleous A, Landao-Bassonga E, van’t Hof RJ, Ralston SH (2008) Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149:5619–5626. doi:10.1210/en.2008-0150

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro H, Onaivi ES, Horiuchi Y, Imai K, Komaki G, Ishikawa T et al (2011) Functional polymorphism in the GPR55 gene is associated with anorexia nervosa. Synapse 65:103–108. doi:10.1002/syn.20821;10.1002/syn.20821

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2005) Assessment of bone quality using micro-computed tomography (micro-CT) and synchrotron micro-CT. J Bone Miner Metab 23(suppl):115–121

    Article  PubMed  Google Scholar 

  • Jarai Z, Wagner JA, Varga K, Lake KD, Compton DR, Martin BR et al (1999) Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc Natl Acad Sci U S A 96:14136–14141

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Zhao J, Liao EY, Dai RC, Wu XP, Genant HK (2005) Application of micro-CT assessment of 3-D bone microstructure in preclinical and clinical studies. J Bone Miner Metab 23(suppl):122–131

    Article  PubMed  Google Scholar 

  • Jiang Y, Jacobson J, Genant HK, Zhao J (2007) Application of micro-CT and MRI in clinical and preclinical studies of osteoporosis and related disorders. In: Qin L, Genant HK, Griffith J, Leung K-S (eds) Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Springer, Heidelberg, pp 399–415

    Chapter  Google Scholar 

  • Johns DG, Behm DJ, Walker DJ, Ao Z, Shapland EM, Daniels DA et al (2007) The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. Br J Pharmacol 152:825–831. doi:10.1038/sj.bjp.0707419

    Article  PubMed  CAS  Google Scholar 

  • Joost P, Methner A (2002) Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol 3:RESEARH0063

    Article  Google Scholar 

  • Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS et al (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284:29817–29827. doi:10.1074/jbc.M109.050187

    Article  PubMed  CAS  Google Scholar 

  • Kargl J, Balenga N, Platzer W, Martini L, Whistler J, Waldhoer M (2012) The GPCR-associated sorting protein 1 regulates ligand-induced downregulation of GPR55. Br J Pharmacol 165(8):2611–2619. doi:10.1111/j.1476-5381.2011.01562.x;10.1111/j.1476-5381.2011.01562.x

    Article  PubMed  CAS  Google Scholar 

  • Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U et al (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  PubMed  CAS  Google Scholar 

  • Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  • Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105:2699–2704. doi:10.1073/pnas.0711278105

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Lorenzo JA (1999) Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 140:3552–3561

    Article  PubMed  CAS  Google Scholar 

  • Lee SE, Chung WJ, Kwak HB, Chung CH, Kwack KB, Lee ZH et al (2001) Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem 276:49343–49349. doi:10.1074/jbc.M103642200

    Article  PubMed  CAS  Google Scholar 

  • Lewiecki EM (2009) Denosumab update. Curr Opin Rheumatol 21:369–373. doi:10.1097/BOR.0b013e32832ca41c

    Article  PubMed  Google Scholar 

  • Lian JB, Stein GS, Aubin JE (2003) Chapter 3. Bone formation: maturation and functional activities of osteoblast lineage cells. Primer 5:13–28

    Google Scholar 

  • Luchin A, Purdom G, Murphy K, Clark MY, Angel N, Cassady AI et al (2000) The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts. J Bone Miner Res 15:451–460

    Article  PubMed  CAS  Google Scholar 

  • Mackie K, Stella N (2006) Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J 8:E298–E306. doi:10.1208/aapsj080234

    PubMed  Google Scholar 

  • Mailman RB (2007) GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci 28:390–396. doi:10.1016/j.tips.2007.06.002

    Article  PubMed  CAS  Google Scholar 

  • Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R et al (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 97:9561–9566. doi:10.1073/pnas.160105897

    Article  PubMed  CAS  Google Scholar 

  • Martin TJ, Udagawa N (1998) Hormonal regulation of osteoclast function. Trends Endocrinol Metab 9:6–12

    Article  PubMed  CAS  Google Scholar 

  • McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D et al (2000) Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–440. doi:10.1172/JCI8905

    Article  PubMed  CAS  Google Scholar 

  • McHugh D, Tanner C, Mechoulam R, Pertwee RG, Ross RA (2008) Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol Pharmacol 73:441–450. doi:10.1124/mol.107.041863

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM, Glass M, Pertwee RG (2007) Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences. Br J Pharmacol 152:583–593

    Article  PubMed  CAS  Google Scholar 

  • Meadows NA, Sharma SM, Faulkner GJ, Ostrowski MC, Hume DA, Cassady AI (2007) The expression of Clcn7 and Ostm1 in osteoclasts is coregulated by microphthalmia transcription factor. J Biol Chem 282:1891–1904. doi:10.1074/jbc.M608572200

    Article  PubMed  CAS  Google Scholar 

  • Metz SA (1986) Lysophosphatidylinositol, but not lysophosphatidic acid, stimulates insulin release. A possible role for phospholipase A2 but not de novo synthesis of lysophospholipid in pancreatic islet function. Biochem Biophys Res Commun 138:720–727

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y, Yamamoto A et al (2000) Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. J Cell Biol 148:333–342

    Article  PubMed  CAS  Google Scholar 

  • Monet M, Gkika D, Lehen’kyi V, Pourtier A, Vanden Abeele F, Bidaux G et al (2009) Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim Biophys Acta 1793:528–539. doi:10.1016/j.bbamcr.2009.01.003

    Article  PubMed  CAS  Google Scholar 

  • Motyckova G, Weilbaecher KN, Horstmann M, Rieman DJ, Fisher DZ, Fisher DE (2001) Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proc Natl Acad Sci U S A 98:5798–5803. doi:10.1073/pnas.091479298

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29. doi:10.1016/S0092-8674(01)00622-5

    Article  PubMed  CAS  Google Scholar 

  • Napimoga MH, Benatti BB, Lima FO, Alves PM, Campos AC, Pena-Dos-Santos DR et al (2009) Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats. Int Immunopharmacol 9:216–222. doi:10.1016/j.intimp.2008.11.010

    Article  PubMed  CAS  Google Scholar 

  • Nefussi JR, Boy-Lefevre ML, Boulekbache H, Forest N (1985) Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differentiation 29:160–168

    Article  PubMed  CAS  Google Scholar 

  • Notarnicola M, Messa C, Orlando A, Bifulco M, Laezza C, Gazzerro P et al (2008) Estrogenic induction of cannabinoid CB1 receptor in human colon cancer cell lines. Scand J Gastroenterol 43:66–72

    Article  PubMed  CAS  Google Scholar 

  • Obara Y, Ueno S, Yanagihata Y, Nakahata N (2011) Lysophosphatidylinositol causes neurite retraction via GPR55, G13 and RhoA in PC12 cells. PLoS One 6:e24284. doi:10.1371/journal.pone.0024284

    Article  PubMed  CAS  Google Scholar 

  • Ochotny N, Van Vliet A, Chan N, Yao Y, Morel M, Kartner N et al (2006) Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity. J Biol Chem 281:26102–26111. doi:10.1074/jbc.M601118200

    Article  PubMed  CAS  Google Scholar 

  • Odgren PR, Kim N, MacKay CA, Mason-Savas A, Choi Y, Marks SC Jr (2003) The role of RANKL (TRANCE/TNFSF11), a tumor necrosis factor family member, in skeletal development: effects of gene knockout and transgenic rescue. Connect Tissue Res 44(suppl 1): 264–271

    PubMed  CAS  Google Scholar 

  • Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K et al (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci U S A 103:696–701

    Article  PubMed  CAS  Google Scholar 

  • Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362:928–934. doi:10.1016/j.bbrc.2007.08.078

    Article  PubMed  CAS  Google Scholar 

  • Oka S, Toshida T, Maruyama K, Nakajima K, Yamashita A, Sugiura T (2009) 2-Arachidonoyl-sn-glycero-3-phosphoinositol: a possible natural ligand for GPR55. J Biochem 145:13–20. doi:10.1093/jb/mvn136

    Article  PubMed  CAS  Google Scholar 

  • Oka S, Kimura S, Toshida T, Ota R, Yamashita A, Sugiura T (2010) Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. J Biochem 147:671–678. doi:10.1093/jb/mvp208

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM (2005) FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16:205–213. doi:10.1016/j.cytogfr.2005.02.003

    Article  PubMed  CAS  Google Scholar 

  • Ory S, Brazier H, Pawlak G, Blangy A (2008) Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur J Cell Biol 87:469–477. doi:10.1016/j.ejcb.2008.03.002

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30:5–7. doi:10.1016/S8756-3282(01)00642-1

    Article  PubMed  CAS  Google Scholar 

  • Paton WDM, Pertwee RG (1973) The pharmacology of cannabis in animals. In: Mechoulam R (ed) Marijuana: chemistry, pharmacology, metabolism and clinical effects. Academic, New York

    Google Scholar 

  • Pertwee RG (2007) GPR55: a new member of the cannabinoid receptor clan? Br J Pharmacol 152:984–986. doi:10.1038/sj.bjp.0707464

    Article  PubMed  CAS  Google Scholar 

  • Pineiro R, Maffucci T, Falasca M (2011) The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. Oncogene 30:142–152. doi:10.1038/onc.2010.417

    Article  PubMed  CAS  Google Scholar 

  • Reid IR (2008) Anti-resorptive therapies for osteoporosis. Semin Cell Dev Biol 19:473–478. doi:10.1016/j.semcdb.2008.08.002

    Article  PubMed  CAS  Google Scholar 

  • Riggs BL (2000) The mechanisms of estrogen regulation of bone resorption. J Clin Invest 106:1203–1204. doi:10.1172/JCI11468

    Article  PubMed  CAS  Google Scholar 

  • Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G et al (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 98:13960–13965

    Article  PubMed  CAS  Google Scholar 

  • Romero-Zerbo SY, Rafacho A, Diaz-Arteaga A, Suarez J, Quesada I, Imbernon M et al (2011) A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J Endocrinol 211:177–185. doi:10.1530/JOE-11-0166

    Article  PubMed  CAS  Google Scholar 

  • Ross FP (2000) RANKing the importance of measles virus in Paget’s disease. J Clin Invest 105:555–558. doi:10.1172/JCI9557

    Article  PubMed  CAS  Google Scholar 

  • Ross RA (2009) The enigmatic pharmacology of GPR55. Trends Pharmacol Sci 30:156–163. doi:10.1016/j.tips.2008.12.004

    Article  PubMed  CAS  Google Scholar 

  • Ross RA (2011) L-alpha-lysophosphatidylinositol meets GPR55: a deadly relationship. Trends Pharmacol Sci 32:265–269. doi:10.1016/j.tips.2011.01.005

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Siniscalco D, Luongo L, De Petrocellis L, Bellini G, Petrosino S et al (2009) The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. Bone 44:476–484. doi:10.1016/j.bone.2008.10.056

    Article  PubMed  CAS  Google Scholar 

  • Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101. doi:10.1038/sj.bjp.0707460

    Article  PubMed  CAS  Google Scholar 

  • Sawzdargo M, Nguyen T, Lee DK, Lynch KR, Cheng R, Heng HH et al (1999) Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res 64:193–198

    Article  PubMed  CAS  Google Scholar 

  • Sharir H, Abood ME (2010) Pharmacological characterization of GPR55, a putative cannabinoid receptor. Pharmacol Ther 126:301–313. doi:10.1016/j.pharmthera.2010.02.004

    Article  PubMed  CAS  Google Scholar 

  • Shui C, Spelsberg TC, Riggs BL, Khosla S (2003) Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 18:213–221

    Article  PubMed  CAS  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  • Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L et al (2007) Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 39:960–962. doi:10.1038/ng2076

    Article  PubMed  CAS  Google Scholar 

  • Song I, Kim JH, Kim K, Jin HM, Youn BU, Kim N (2009) Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Lett 583:2435–2440. doi:10.1016/j.febslet.2009.06.047

    Article  PubMed  CAS  Google Scholar 

  • Specker BL, Schoenau E (2005) Quantitative bone analysis in children: current methods and ­recommendations. J Pediatr 146:726–731. doi:10.1016/j.jpeds.2005.02.002

    Article  PubMed  Google Scholar 

  • Spence A (1990) Basic human anatomy. Benjamin-Cummings Publishing Company, New York

    Google Scholar 

  • Stark Z, Savarirayan R (2009) Osteopetrosis. Orphanet J Rare Dis 4:5. doi:10.1186/1750-1172-4-5

    Article  PubMed  Google Scholar 

  • Staton PC, Hatcher JP, Walker DJ, Morrison AD, Shapland EM, Hughes JP et al (2008) The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 139:225–236. doi:10.1016/j.pain.2008.04.006

    Article  PubMed  CAS  Google Scholar 

  • Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC Jr, LaPolla JP et al (2004) Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev 13:1185–1191

    PubMed  CAS  Google Scholar 

  • Syed F, Khosla S (2005) Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun 328:688–696. doi:10.1016/j.bbrc.2004.11.097

    Article  PubMed  CAS  Google Scholar 

  • Takada Y, Irie N, Gresh L, Nakamura T, Kato S, Wagner EF et al (2009) Late expression of c-Fos during osteoclast differentiation determines osteoclast survival and bone mass. Bone 44:S137

    Article  Google Scholar 

  • Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K et al (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408:600–605. doi:10.1038/3504610210

    Article  PubMed  CAS  Google Scholar 

  • Takeda S (2008) Central control of bone remodelling. J Neuroendocrinol 20:802–807. doi:10.1111/j.1365-2826.2008.01732.x

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  PubMed  CAS  Google Scholar 

  • Tam J, Ofek O, Fride E, Ledent C, Gabet Y, Muller R et al (2006) Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 70:786–792. doi:10.1124/mol.106.026435

    Article  PubMed  CAS  Google Scholar 

  • Tam J, Trembovler V, Di Marzo V, Petrosino S, Leo G, Alexandrovich A et al (2008) The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J 22:285–294. doi:10.1096/fj.06-7957com

    Article  PubMed  CAS  Google Scholar 

  • Van Poznak C, Nadal C (2006) Bone integrity and bone metastases in breast cancer. Curr Oncol Rep 8:22–28

    Article  PubMed  Google Scholar 

  • Waguespack SG, Koller DL, White KE, Fishburn T, Carn G, Buckwalter KA et al (2003) Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res 18:1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M et al (2008) Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 121:1704–1717. doi:10.1242/jcs.020958

    Article  PubMed  CAS  Google Scholar 

  • Wei B, Wang J, Bourne P, Yang Q, Hicks D, Bu H et al (2008) Bone metastasis is strongly associated with estrogen receptor-positive/progesterone receptor-negative breast carcinomas. Hum Pathol 39:1809–1815. doi:10.1016/j.humpath.2008.05.010

    Article  PubMed  CAS  Google Scholar 

  • Weilbaecher KN, Motyckova G, Huber WE, Takemoto CM, Hemesath TJ, Xu Y et al (2001) Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf(mi/mi) mice. Mol Cell 8:749–758

    Article  PubMed  CAS  Google Scholar 

  • Wenger T, Ledent C, Csernus V, Gerendai I (2001) The central cannabinoid receptor inactivation suppresses endocrine reproductive functions. Biochem Biophys Res Commun 284:363–368

    Article  PubMed  CAS  Google Scholar 

  • Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ et al (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci 106(38):16511–16516. doi:10.1073/pnas.0902743106

    Article  PubMed  CAS  Google Scholar 

  • Whyte LS, Ford L, Ridge SA, Cameron GA, Rogers MJ, Ross RA (2011) Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro. Br J Pharmacol 165(8):2584–2597. doi:10.1111/j.1476-5381.2011.01519.x;10.1111/j.1476-5381.2011.01519.x

    Article  CAS  Google Scholar 

  • Xiao YJ, Schwartz B, Washington M, Kennedy A, Webster K, Belinson J et al (2001) Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal Biochem 290:302–313. doi:10.1006/abio.2001.5000

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Komori T, Suda T (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, Hedgehogs, and Cbfa1. Endocr Rev 21:393–411. doi:10.1210/er.21.4.393

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Kream BE (2008) Calcitonin induces expression of the inducible cAMP early repressor in osteoclasts. Endocrine 33:245–253. doi:10.1007/s12020-008-9092-8

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H et al (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444. doi:10.1038/345442a0

    Article  PubMed  CAS  Google Scholar 

  • Young MF (2003) Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int 14(suppl 3):S35–S42. doi:10.1007/s00198-002-1342-7

    PubMed  CAS  Google Scholar 

  • Zhang D, Udagawa N, Nakamura I, Murakami H, Saito S, Yamasaki K et al (1995) The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts. J Cell Sci 108:2285–2292

    Article  PubMed  CAS  Google Scholar 

  • Zhu LL, Zaidi S, Moonga BS, Troen BR, Sun L (2005) RANK-L induces the expression of NFATc1, but not of NFkappaB subunits during osteoclast formation. Biochem Biophys Res Commun 326:131–135. doi:10.1016/j.bbrc.2004.10.212

    Article  PubMed  CAS  Google Scholar 

  • Zuardi AW (2008) Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. Rev Bras Psiquiatr 30:271–280

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren S. Whyte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Whyte, L.S., Ross, R.A. (2013). The Role of GPR55 in Bone Biology. In: Abood, M., Sorensen, R., Stella, N. (eds) endoCANNABINOIDS. The Receptors, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4669-9_4

Download citation

Publish with us

Policies and ethics