Skip to main content

Mathematical Models of Placement Optimisation: Two- and Three-Dimensional Problems and Applications

  • Chapter
  • First Online:
Modeling and Optimization in Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 73))

Abstract

We study NP-hard placement optimisation problems, which cover a wide spectrum of industrial applications, including space engineering. This chapter considers tools of mathematical modelling and a solution strategy of placement problems illustrated with examples and pictures. A class of 2D and 3D geometric objects, called phi-objects, is introduced and considered as mathematical models of real objects. We review the main concept of our studies, i.e. phi-functions. One may also find a clear definition of phi-function as an analytical tool for describing placement constraints, including containment, non-overlapping, allowable distances, prohibited areas, object translations and rotations. A mathematical model of a basic placement problem is constructed as constrained optimisation problem. We propose a solution strategy for placement problems. The reader will get acquainted with an application problem of the basic placement problem encountered in space engineering and find a number of computational results for 2D and 3D applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burke, E., Hellier, R., Kendall, G., Whitwell, G.: Irregular packing using the line and arc no-fit polygon. Oper. Res. 58(4), 948–970 (2010)

    Article  MATH  Google Scholar 

  2. Costa, M.T., Gomes, A.M., Oliveira, J.F.: Heuristic approaches to large-scale periodic packing of irregular shapes on a rectangular sheet. Eur. J. Oper. Res. 192, 29–40 (2009)

    Article  MATH  Google Scholar 

  3. Cui, Y.: Generating optimal multi-segment cutting patterns for circular blanks in the manufactoring of electric motors. Eur. J. Oper. Res. 169, 30–40 (2006)

    Article  MATH  Google Scholar 

  4. Gomes, A.M., Oliveira, J.F.: Solving irregular strip packing problems by hybridising simulated annealing and linear programming. Eur. J. Oper. Res. 171, 811–829 (2006)

    Article  MATH  Google Scholar 

  5. Birgin, E.G., Martinez, J.M., Nishihara, F.H., Ronconi, D.P.: Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization. Comput. Oper. Res. 33, 3535–3548 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 43, 299–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Milenkovic, V.J., Daniels, K.: Translational polygon containment and minimal enclosure using mathematical programming. Int. Trans. Oper. Res. 6, 525–554 (1999)

    Article  MathSciNet  Google Scholar 

  8. Bennell, J.A., Oliveira, J.F.: The geometry of nesting problems: A tutorial. European J. Oper. Res. 184, 397–415 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wаscher, G., Hauner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J.Oper. Res. 183(3, 16), 1109–1130 (2007)

    Article  Google Scholar 

  10. Bennell, J.A., Song, X.: A comprehensive and robust procedure for obtaining the nofit polygon using Minkowski sums. Comput. Oper. Res. 35(1), 267–281 (2006)

    Article  MathSciNet  Google Scholar 

  11. Milenkovic, V.J.: Rotational polygon overlap minimization and compaction. Comput. Geom. 10, 305–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Milenkovic, V.J., Sacks, E.: Two approximate Minkowski sum algorithms. Int. J. Comput. Geom. Appl. 20(4), 485–509 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aladahalli, C., Cagan, J., Shimada, K.: Objective function effect based pattern search — theoretical framework inspired by 3D component layout. J. Mech. Design 129, 243–254 (2007)

    Article  Google Scholar 

  14. Birgin, E.G., Martínez, J., Ronconi, D.: Optimizing the packing of cylinders into a rectangular container: A nonlinear approach. European J. Oper. Res. 160(1), 19–33 (2005)

    Article  MATH  Google Scholar 

  15. Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere packing problems. Comput. Oper. Res. 35, 2357–2375 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Egeblad, J., Nielsen, B.K., Brazil, M.: Translational packing of arbitrary polytopes. Comput. Geom. 42(4), 269–288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Egeblad, J., Nielsen, B.K., Odgaard, A.: Fast neighborhood search for two- and three-dimensional nesting problems. Eur. J. Oper. Res. 183(3), 1249–1266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fasano, G.: MIP-based heuristic for non-standard 3D-packing problems. 4OR: Quar. J. Belgian French Italian Oper. Res. Soc. 6(3), 291–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gan, M., Gopinathan, N., Jia, X., Williams, R.A.: Predicting packing characteristics of particles of arbitrary shapes. KONA 22, 82–93 (2004)

    Google Scholar 

  20. Jia, X., Gan, M., Williams, R.A., Rhodes, D.: Validation of a digital packing algorithm in predicting powder packing densities. Powder Tech. 174, 10–13 (2007)

    Article  Google Scholar 

  21. Torquato, S., Stillinger, F.H.: Jammed hard-particle packings: From Kepler to Bernal and beyond. Rev. Modern Phys. 82(3), 2633–2672 (2010)

    Article  MathSciNet  Google Scholar 

  22. Cagan, J., Shimada, K., Yin, S.: A survey of computational approaches to three-dimensional layout problems. Comput. Aided Design 34, 597–611 (2002)

    Article  Google Scholar 

  23. Bennell, J.A., Scheithauer, G., Stoyan, Yu, Romanova, T.: Tools of mathematical modelling of arbitrary object packing problems. J. Annal. Oper. Res. 179(1), 343–368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chernov, N., Stoyan, Y., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom.: Theor. Appl. 43(5), 535–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chernov, N., Stoyan, Y., Romanova, T., Pankratov, A.: Phi-functions for 2D objects formed by line segments and circular arcs. Adv. Oper. Res. (2012). doi:10.1155/2012/346358

  26. Scheithauer, G., Stoyan, Yu, Romanova, T.: Mathematical modeling of interactions of primary geometric 3D objects. Cybernet. Syst. Anal. 41, 332–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stoyan, Y., Gil, M., Terno, J., Romanova, T., Scheithauer, G.: Construction of a Phi- function for two convex polytopes. Appliсationes Mathematicae 2(29), 199–218 (2002)

    Article  MathSciNet  Google Scholar 

  28. Stoyan, Y., Gil, N., Romanova, T., Scheithauer, G.: Phi-functions for complex 2D objects. 4OR: Quar. J. Belgian French Italian Oper. Res. Soc. 2(1), 69–84 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Stoyan, Y., Terno, J., Scheithauer, G., Gil, N., Romanova, T.: Phi-function for 2D primary objects. Studia Informatica 2(1), 1–32 (2002)

    Google Scholar 

  30. Stoyan, Y., Pankratov, A., Sheithauer, G.: Translational packing non-convex polytopes into a parallelepiped. J. Mech. Eng. 12(3), 67–76 (2009)

    Google Scholar 

  31. Stoyan, Y., Chugay, A.: Packing cylinders and rectangular parallelepipeds with distances between them. Eur. J. Oper. Res. 197, 446–455 (2008)

    Article  Google Scholar 

  32. Zoutendijk, G.: Nonlinear Programming, Computational Methods, Integer and Nonlinear Programming. North-Holland, Amsterdam (1970)

    Google Scholar 

  33. Stoyan, Y., Chugay, A.: An optimization problem of packing identical circles into a multiply connected region, Part 2. A solution method and its realisation. J. Mech. Eng. 14(2), 52–61 (2011)

    Google Scholar 

  34. Stoyan, Y., Gil, M., Scheithauer, G., Pankratov, A., Magdalina, I.: Packing of convex polytopes into a parallelepiped. Optimization 54(2), 215–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stoyan, Y., Yaskov, G.: Packing congruent hyperspheres into a hypersphere. J. Global Optim. (2012). doi:10.1007/s10898-011-9716-z

  36. Scheithauer, G., Stoyan, Yu, Romanova, T., Krivulya, A.: Covering a polygonal region by rectangles. Comput. Optim. Appl. 48(3), 675–695 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stoyan, Y., Patsuk, V.: Covering a compact polygonal set by identical circles. Comput. Optim. Appl. 46, 75–92 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoyan, Y., Romanova, T. (2012). Mathematical Models of Placement Optimisation: Two- and Three-Dimensional Problems and Applications. In: Fasano, G., Pintér, J. (eds) Modeling and Optimization in Space Engineering. Springer Optimization and Its Applications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4469-5_15

Download citation

Publish with us

Policies and ethics