Skip to main content

Case Studies Applying Biophysical Techniques to Better Characterize Protein Aggregates and Particulates of Varying Size

  • Chapter
  • First Online:
Biophysics for Therapeutic Protein Development

Abstract

During the manufacture, storage, and administration of protein therapeutics, aggregates and particles of varying size can form. The presence of these impurities may directly affect the immunogenicity and efficacy of the protein-based drugs. The detection and characterization of protein aggregates and particles has therefore become increasingly important from a pharmaceutical perspective, especially the use of different analytical technologies to comprehensively characterize the number, size range, morphology, and composition of protein aggregates and particles over a wide size range. This review chapter evaluates recent case studies that have utilized a combination of biophysical techniques to characterize soluble protein aggregates (1–100 nm) as well as submicron-sized (100–1,000 nm), subvisible (1–100 μm), and visible (>100 μm) protein particles. The case studies not only provide interesting comparisons of different biophysical methods but also examine varying effects observed with different protein therapeutics formulated in different dosage forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic ­perspectives. Nat Rev Drug Discov 9(3):237–248

    Article  PubMed  CAS  Google Scholar 

  • Ahrer K, Buchacher A, Iberer G, Josic D, Jungbauer A (2003) Analysis of aggregates of human immunoglobulin G using size-exclusion chromatography, static and dynamic light scattering. J Chromatogr A 1009(1–2):89–96

    PubMed  CAS  Google Scholar 

  • Arakawa T, Ejima D, Li T, Philo JS (2010) The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals. J Pharm Sci 99(4):1674–1692

    PubMed  CAS  Google Scholar 

  • Barnard JG, Singh S, Randolph TW, Carpenter JF (2010) Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway. J Pharm Sci 100(2):492–503

    Article  PubMed  CAS  Google Scholar 

  • Barnard JG, Rhyner MN, Carpenter JF (2012) Critical evaluation and guidance for using the coulter method for counting subvisible particles in protein solutions. J Pharm Sci 101(1):140–153

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz SA (2006) Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J 8(3):E590–E605

    Article  PubMed  CAS  Google Scholar 

  • Bhambhani A, Kissmann JM, Joshi SB, Volkin DB, Kashi RS, Middaugh CR (2012) Formulation design and high-throughput excipient selection based on structural integrity and conformational stability of dilute and highly concentrated IgG1 monoclonal antibody solutions. J Pharm Sci 101(3):1120–1135

    Article  PubMed  CAS  Google Scholar 

  • Bond MD, Panek ME, Zhang Z et al (2010) Evaluation of a dual-wavelength size exclusion HPLC method with improved sensitivity to detect protein aggregates and its use to better characterize degradation pathways of an IgG1 monoclonal antibody. J Pharm Sci 99(6):2582–2597

    PubMed  CAS  Google Scholar 

  • Burg TP, Godin M, Knudsen SM et al (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139):1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Calamai M, Canale C, Relini A, Stefani M, Chiti F, Dobson CM (2005) Reversal of protein aggregation provides evidence for multiple aggregated States. J Mol Biol 346(2):603–616

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Pollastrini J, Jiang Y (2009) Separation and characterization of protein aggregates and particles by field flow fractionation. Curr Pharm Biotechnol 10(4):382–390

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Masatani P, Torraca G, Wen ZQ (2010) Identification of a mixed microparticle by combined microspectroscopic techniques: a real forensic case study in the biopharmaceutical industry. Appl Spectrosc 64(8):895–900

    Article  PubMed  CAS  Google Scholar 

  • Carpenter JF, Randolph TW, Jiskoot W et al (2009) Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci 98(4):1201–1205

    Article  PubMed  CAS  Google Scholar 

  • Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G (2010a) Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci 99(5):2200–2208

    Article  PubMed  CAS  Google Scholar 

  • Carpenter J, Cherney B, Lubinecki A et al (2010b) Meeting report on protein particles and immunogenicity of therapeutic proteins: filling in the gaps in risk evaluation and mitigation. Biologicals 38(5):602–611

    Article  PubMed  Google Scholar 

  • Chait BT (2011) Mass spectrometry in the postgenomic era. Annu Rev Biochem 80:239–246

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, van Breemen RB (2005) Mass spectrometry-based screening for inhibitors of beta-­amyloid protein aggregation. Anal Chem 77(21):7012–7015

    Article  PubMed  CAS  Google Scholar 

  • Chrai S, Clayton R, Mestrandrea L et al (1987) Limitations in the use of HIAC for product particle counting. J Parenter Sci Technol 41(6):209–214

    PubMed  CAS  Google Scholar 

  • Colton RJ, Baselt DR, Dufrene YF, Green JB, Lee GU (1997) Scanning probe microscopy. Curr Opin Chem Biol 1(3):370–377

    Article  PubMed  CAS  Google Scholar 

  • Costello MA, Woititz C, Defeo J et al (1992) Characterization of humanized anti-tac monoclonal-­antibody by traditional separation techniques and capillary electrophoresis. J Liq Chromatogr 15(6–7):1081–1097

    CAS  Google Scholar 

  • Cram LS (2002) Flow cytometry, an overview. Methods Cell Sci 24(1–3):1–9

    Article  PubMed  CAS  Google Scholar 

  • Dam J, Schuck P (2004) Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Meth Enzymol 384:185–212

    Article  PubMed  CAS  Google Scholar 

  • David Bernard Williams CBC (2009) The transmission electron microscope. Springer, New York

    Book  Google Scholar 

  • Demeule B, Gurny R, Arvinte T (2007a) Detection and characterization of protein aggregates by fluorescence microscopy. Int J Pharm 329(1–2):37–45

    Article  PubMed  CAS  Google Scholar 

  • Demeule B, Lawrence MJ, Drake AF, Gurny R, Arvinte T (2007b) Characterization of protein aggregation: the case of a therapeutic immunoglobulin. Biochim Biophys Acta 1774(1):146–153

    Article  PubMed  CAS  Google Scholar 

  • Demeule B, Palais C, Machaidze G, Gurny R, Arvinte T (2009) New methods allowing the detection of protein aggregates: a case study on trastuzumab. MAbs 1(2):142–150

    Article  PubMed  Google Scholar 

  • Demeule B, Messick S, Shire SJ, Liu J (2010) Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J 12(4):708–715

    Article  PubMed  CAS  Google Scholar 

  • Engelhard M, Evans PA (1995) Kinetics of interaction of partially folded proteins with a hydrophobic dye: evidence that molten globule character is maximal in early folding intermediates. Protein sci 4(8):1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Engelsman J, Garidel P, Smulders R et al (2011) Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res 28(4):920–933

    Article  CAS  Google Scholar 

  • Erukhimovitch V, Talyshinsky M, Souprun Y, Huleihel M (2002) Spectroscopic characterization of human and mouse primary cells, cell lines and malignant cells. Photochem Photobiol 76(4):446–451

    Article  PubMed  CAS  Google Scholar 

  • Esue O, Kanai S, Liu J, Patapoff TW, Shire SJ (2009) Carboxylate-dependent gelation of a monoclonal antibody. Pharm Res 26(11):2478–2485

    Article  PubMed  CAS  Google Scholar 

  • Ferreira GN, da-Silva AC, Tome B (2009) Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance. Trends Biotechnol 27(12):689–697

    Article  PubMed  CAS  Google Scholar 

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810

    Article  PubMed  CAS  Google Scholar 

  • Filipe V, Poole R, Kutscher M, Forier K, Braeckmans K, Jiskoot W (2011) Fluorescence single particle tracking for the characterization of submicron protein aggregates in biological fluids and complex formulations. Pharm Res 28(5):1112–1120

    Article  PubMed  CAS  Google Scholar 

  • Flores-Fernandez GM, Sola RJ, Griebenow K (2009) The relation between moisture-induced aggregation and structural changes in lyophilized insulin. J Pharm Pharmacol 61(11):1555–1561

    Article  PubMed  CAS  Google Scholar 

  • Fradkin AH, Carpenter JF, Randolph TW (2011) Glass particles as an adjuvant: a model for adverse immunogenicity of therapeutic proteins. J Pharm Sci 100(11):4953–4964

    Article  PubMed  CAS  Google Scholar 

  • Fraunhofer W, Winter G (2004) The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm 58(2):369–383

    Article  PubMed  CAS  Google Scholar 

  • Gabrielson JP, Arthur KK (2011) Measuring low levels of protein aggregation by sedimentation velocity. Methods 54(1):83–91

    Article  PubMed  CAS  Google Scholar 

  • Gabrielson JP, Brader ML, Pekar AH et al (2007) Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size-exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity. J Pharm Sci 96(2):268–279

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg MH, Frelinger AL, Lam SC et al (1990) Analysis of platelet aggregation disorders based on flow cytometric analysis of membrane glycoprotein IIb-IIIa with conformation-specific monoclonal antibodies. Blood 76(10):2017–2023

    PubMed  CAS  Google Scholar 

  • Giselle M, Flores-Fernandez G, Solá R, Griebenow K (2009) The relation between moisture-­induced aggregation and structural changes in lyophilized insulin. J Pharm Pharmacol 61(11):1555–1561

    Article  Google Scholar 

  • Greenwood R (2003) Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics. Adv Colloid Interface Sci 106:55–81

    Article  PubMed  CAS  Google Scholar 

  • Grillberger L, Kreil TR, Nasr S, Reiter M (2009) Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells. Biotechnol J 4(2):186–201

    Article  PubMed  CAS  Google Scholar 

  • Han M, Phan D, Nightlinger N et al (2006) Optimization of CE-SDS method for antibody separation based on multi-users experimental practices. Chromatographia 64:334–342

    Google Scholar 

  • Harding SA, Din JN, Sarma J et al (2007) Flow cytometric analysis of circulating platelet-­monocyte aggregates in whole blood: methodological considerations. Thromb Haemost 98(2):451–456

    PubMed  CAS  Google Scholar 

  • Harper JD, Lieber CM, Lansbury PT Jr (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem Biol 4(12):951–959

    Article  PubMed  CAS  Google Scholar 

  • Hawe A, Friess W, Sutter M, Jiskoot W (2008a) Online fluorescent dye detection method for the characterization of immunoglobulin G aggregation by size exclusion chromatography and asymmetrical flow field flow fractionation. Anal Biochem 378(2):115–122

    Article  PubMed  CAS  Google Scholar 

  • Hawe A, Sutter M, Jiskoot W (2008b) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25(7):1487–1499

    Article  PubMed  CAS  Google Scholar 

  • Hawe A, Hulse WL, Jiskoot W, Forbes RT (2011) Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharm Res 28(9):2302–2310

    Article  PubMed  CAS  Google Scholar 

  • He F, Phan DH, Hogan S et al (2010) Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence. J Pharm Sci 99(6):2598–2608

    PubMed  CAS  Google Scholar 

  • Heldt CL, Sorci M, Posada D, Hirsa A, Belfort G (2011) Detection and reduction of microaggregates in insulin preparations. Biotechnol Bioeng 108(1):237–241

    Article  PubMed  CAS  Google Scholar 

  • Hillger F, Nettels D, Dorsch S, Schuler B (2007) Detection and analysis of protein aggregation with confocal single molecule fluorescence spectroscopy. J Fluoresc 17(6):759–765

    Article  PubMed  CAS  Google Scholar 

  • Houde D, Arndt J, Domeier W, Berkowitz S, Engen JR (2009) Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal Chem 81(14):5966

    Article  PubMed  CAS  Google Scholar 

  • Huang C-T, Sharma D, Oma P, Krishnamurthy R (2009) Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci 98(9):3058–3071

    Article  PubMed  CAS  Google Scholar 

  • Hughes H, Morgan C, Brunyak E et al (2009) A multi-tiered analytical approach for the analysis and quantitation of high-molecular-weight aggregates in a recombinant therapeutic glycoprotein. AAPS J 11(2):335–341

    Article  PubMed  CAS  Google Scholar 

  • Hunt G, Moorhouse KG, Chen AB (1996) Capillary isoelectric focusing and sodium dodecyl sulfate-­capillary gel electrophoresis of recombinant humanized monoclonal antibody HER2. J Chromatogr A 744(1–2):295–301

    PubMed  CAS  Google Scholar 

  • Jorio H, Tran R, Meghrous J, Bourget L, Kamen A (2006) Analysis of baculovirus aggregates using flow cytometry. J Virol Methods 134(1–2):8–14

    Article  PubMed  CAS  Google Scholar 

  • Joseph Goldstein DN, Joy D, Lyman C, Echlin P, Lifshin E, Sawyer L, Michael J (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Plenum, New York

    Book  Google Scholar 

  • Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO (2011) Classification and characterization of therapeutic antibody aggregates. J Biol Chem 286(28):25118–25133

    Article  PubMed  CAS  Google Scholar 

  • Kaddis CS, Lomeli SH, Yin S et al (2007) Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. J Am Soc Mass Spectrom 18(7):1206–1216

    Article  PubMed  CAS  Google Scholar 

  • Kaltashov IA, Bobst CE, Abzalimov RR, Wang G, Baykal B, Wang S (2012) Advances and challenges in analytical characterization of biotechnology products: mass spectrometry-based approaches to study properties and behavior of protein therapeutics. Biotechnol Adv 30(1):210–222

    Article  PubMed  CAS  Google Scholar 

  • Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB (2011) Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 63(13):1118–1159

    Article  PubMed  CAS  Google Scholar 

  • Kheterpal I, Wetzel R (2006) Hydrogen/deuterium exchange mass spectrometry—a window into amyloid structure. Acc Chem Res 39(9):584–593

    Article  PubMed  CAS  Google Scholar 

  • Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276(25):22715–22721

    Article  PubMed  CAS  Google Scholar 

  • Kiese S, Papppenberger A, Friess W, Mahler HC (2008) Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci 97(10):4347–4366

    Article  PubMed  CAS  Google Scholar 

  • Kiese S, Pappenberger A, Friess W, Mahler H-C (2010) Equilibrium studies of protein aggregates and homogeneous nucleation in protein formulation. J Pharm Sci 99(2):632–644

    PubMed  CAS  Google Scholar 

  • Kilar F (2003) Recent applications of capillary isoelectric focusing. Electrophoresis 24(22–23):3908–3916

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Randolph TW, Manning MC, Stevens FJ, Carpenter JF (2003) Congo red populates partially unfolded states of an amyloidogenic protein to enhance aggregation and amyloid fibril formation. J Biol Chem 278(12):10842–10850

    Article  PubMed  CAS  Google Scholar 

  • Knowles TPJ, Devlin GL, Dobson CM, Welland ME (2011) Probing protein aggregation with quartz crystal microbalances. In: Hill AF, Barnham KJ, Bottomley SP, Cappai R (eds) Protein folding, misfolding, and disease, vol 752, 1st edn. Humana Press, New York

    Google Scholar 

  • Konermann L, Pan J, Liu YH (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40(3):1224–1234

    Article  PubMed  CAS  Google Scholar 

  • Kraly J, Fazal MA, Schoenherr RM et al (2006) Bioanalytical applications of capillary electrophoresis. Anal Chem 78(12):4097–4110

    Article  PubMed  CAS  Google Scholar 

  • Kukrer B, Filipe V, van Duijn E et al (2010) Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography. Pharm Res 27(10):2197–2204

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Kirchmeier M, Mach H (2011) Monoclonal antibody aggregation intermediates visualized by atomic force microscopy. J Pharm Sci 100(2):416–423

    Article  PubMed  CAS  Google Scholar 

  • Li B, Flores J, Corvari V (2007) A simple method for the detection of insoluble aggregates in protein formulations. J Pharm Sci 96(7):1840–1843

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Mach H, Blue JT (2011) High throughput formulation screening for global aggregation behaviors of three monoclonal antibodies. J Pharm Sci 100(6):2120–2135

    Article  PubMed  CAS  Google Scholar 

  • Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2(12):910–919

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Shire SJ (1999) Analytical ultracentrifugation in the pharmaceutical industry. J Pharm Sci 88(12):1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Andya JD, Shire SJ (2006) A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J 8(3):E580–E589

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Swift R, Torraca G et al (2010) Root cause analysis of tungsten-induced protein aggregation in pre-filled syringes. PDA J Pharm Sci Technol 64(1):11–19

    PubMed  CAS  Google Scholar 

  • Liu L, Ammar DA, Ross LA, Mandava N, Kahook MY, Carpenter JF (2011) Silicone oil microdroplets and protein aggregates in repackaged bevacizumab and ranibizumab: effects of long-term storage and product mishandling. Invest Ophthalmol Vis Sci 52(2):1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Lomakin A, Benedek GB, Teplow DB (1999) Monitoring protein assembly using quasielastic light scattering spectroscopy. Methods Enzymol 309:429–459

    Article  PubMed  CAS  Google Scholar 

  • Lubiniecki A, Volkin DB, Federici M et al (2010) Comparability assessments of process and product changes made during development of two different monoclonal antibodies. Biologicals 39(1):9–22

    Article  PubMed  CAS  Google Scholar 

  • Ludwig DB, Trotter JT, Gabrielson JP, Carpenter JF, Randolph TW (2011) Flow cytometry: a promising technique for the study of silicone oil-induced particulate formation in protein formulations. Anal Biochem 410(2):191–199

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Lu Z, Raso SW, Entrican C, Tangarone B (2009) Dimers and multimers of monoclonal IgG1 exhibit higher in vitro binding affinities to Fcgamma receptors. MAbs 1(5):491–504

    Article  PubMed  Google Scholar 

  • Luo Q, Joubert MK, Stevenson R, Ketchem RR, Narhi LO, Wypych J (2011) Chemical modifications in therapeutic protein aggregates generated under different stress conditions. J Biol Chem 286(28):25134–25144

    Article  PubMed  CAS  Google Scholar 

  • Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink MF (2007) A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem 282(4):2229–2236

    Article  PubMed  CAS  Google Scholar 

  • Mach H, Arvinte T (2011) Addressing new analytical challenges in protein formulation development. Eur J Pharm Biopharm 78(2):196–207

    Article  PubMed  CAS  Google Scholar 

  • Mach H, Middaugh CR (2011) Ultraviolet spectroscopy as a tool in therapeutic protein development. J Pharm Sci 100(4):1214–1227

    Google Scholar 

  • Mach H, Bhambhani A, Meyer BK et al (2011) The use of flow cytometry for the detection of subvisible particles in therapeutic protein formulations. J Pharm Sci 100(5):1671–1678

    Article  PubMed  CAS  Google Scholar 

  • Maddux NR, Joshi SB, Volkin DB, Ralston JP, Middaugh CR (2011) Multidimensional methods for the formulation of biopharmaceuticals and vaccines. J Pharm Sci 100(10):4171–4197

    Google Scholar 

  • Madsen R, Cherris R, Shabushnig JG, Hunt DG (2009) Visible particulates in injections—a history and a proposal to revise USP general chapter injections (1). Pharmacop Forum 35:1383–1387

    Google Scholar 

  • Mahler HC, Muller R, Friess W, Delille A, Matheus S (2005) Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm 59(3):407–417

    Article  PubMed  CAS  Google Scholar 

  • Mahler H-C, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98(9):2909–2934

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Ford BM, Mar KD, Sullivan VJ, Ulrich RG, D’souza AJM (2011) Evaluation of the effect of syringe surfaces on protein formulations. J Pharm Sci 100(7):2563–2573

    Article  PubMed  CAS  Google Scholar 

  • Marcsisin SR, Engen JR (2010) Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem 397(3):967–972

    Article  PubMed  CAS  Google Scholar 

  • Markovich RJ, Taylor AK, Rosen J (1997) Drug migration from the adhesive matrix to the polymer film laminate facestock in a transdermal nitroglycerin system. J Pharm Biomed Anal 16(4):651–660

    Article  PubMed  CAS  Google Scholar 

  • Michel Godin AKB, Burg TP, Babcock K, Manalis SR (2007) Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Appl Phys Lett 91:3

    Google Scholar 

  • Michels DA, Brady LJ, Guo A, Balland A (2007) Fluorescent derivatization method of proteins for characterization by capillary electrophoresis-sodium dodecyl sulfate with laser-induced fluorescence detection. Anal Chem 79(15):5963–5971

    Article  PubMed  CAS  Google Scholar 

  • Middaugh CR, Joshi SB (2011) Spectroscopy of vaccines. In: Singh M, Srivastava IK (eds) Development of vaccines, from discovery to clinical testing. Wiley, Hoboken, pp 263–292

    Google Scholar 

  • Mire-Sluis A, Cherney B, Madsen R, Polozova A, Rosenberg A, Smith H, Arora T, Narhi L (2011) Analysis and immunogenic potential of aggregates and particles. BioProcess Int 9(10):38–43

    Google Scholar 

  • Murphy RM (1997) Static and dynamic light scattering of biological macromolecules: what can we learn? Curr Opin Biotechnol 8(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177(2):244–249

    Article  PubMed  CAS  Google Scholar 

  • Narhi LO, Schmit J, Bechtold-Peters K, Sharma D (2011) Classification of protein aggregates. J Pharm Sci 101(2):493–498

    Article  PubMed  CAS  Google Scholar 

  • Nayak A, Colandene J, Bradford V, Perkins M (2011) Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution. J Pharm Sci 100(10):4198–4204

    Article  CAS  Google Scholar 

  • Nettleton EJ, Tito P, Sunde M, Bouchard M, Dobson CM, Robinson CV (2000) Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry. Biophys J 79(2):1053–1065

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan CK, Guilbault GG (1999) Commercial quartz crystal microbalances – theory and applications. Biosens Bioelectron 14(8–9):663–670

    Article  Google Scholar 

  • Oliva A, Llabres M, Farina JB (2001) Comparative study of protein molecular weights by size-­exclusion chromatography and laser-light scattering. J Pharm Biomed Anal 25:833–841

    Article  PubMed  CAS  Google Scholar 

  • Pease LF 3rd, Elliott JT, Tsai DH, Zachariah MR, Tarlov MJ (2008) Determination of protein aggregation with differential mobility analysis: application to IgG antibody. Biotechnol Bioeng 101(6):1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8(3):E564–E571

    Article  PubMed  CAS  Google Scholar 

  • Philo JS (2009) A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol 10(4):359–372

    Article  PubMed  CAS  Google Scholar 

  • Philo JS, Arakawa T (2009) Mechanisms of protein aggregation. Curr Pharm Biotechnol 10(4):348–351

    Article  PubMed  CAS  Google Scholar 

  • Prati S, Joseph E, Sciutto G, Mazzeo R (2010) New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Acc Chem Res 43(6):792–801

    Article  PubMed  CAS  Google Scholar 

  • Qi P, Volkin DB, Zhao H et al (2009) Characterization of the photodegradation of a human IgG1 monoclonal antibody formulated as a high-concentration liquid dosage form. J Pharm Sci 98(9):3117–3130

    Article  PubMed  CAS  Google Scholar 

  • Remmele RL Jr, Callahan WJ, Krishnan S et al (2006) Active dimer of Epratuzumab provides insight into the complex nature of an antibody aggregate. J Pharm Sci 95(1):126–145

    Article  PubMed  CAS  Google Scholar 

  • Reschiglian P, Zattoni A, Roda B, Michelini E, Roda A (2005) Field-flow fractionation and biotechnology. Trends Biotechnol 23(9):475–483

    Article  PubMed  CAS  Google Scholar 

  • Rhyner MN (2011) The Coulter principle for analysis of subvisible particles in protein formulations. AAPS J 13(1):54–58

    Article  PubMed  CAS  Google Scholar 

  • Roberts GS, Yu S, Zeng Q et al (2012) Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron 31(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Roda B, Zattoni A, Reschiglian P et al (2009) Field-flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta 635(2):132–143

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8(3):E501–E507

    Article  PubMed  Google Scholar 

  • Rosenberg E, Hepbildikler S, Kuhne W, Winter G (2009) Ultrafiltration concentration of monoclonal antibody solutions: development of an optimized method minimizing aggregation. J Membr Sci 342(1–2):50–59

    Article  CAS  Google Scholar 

  • Ross S, Morrison ID (2002) Colloidal dispersions. Wiley Interscience, New York

    Google Scholar 

  • Rumi Chunara MG, Knudsen SM, Manalis SR (2007) Mass-based readout for agglutination assays. Appl Phys Lett 91:3

    Google Scholar 

  • Rustandi RR, Washabaugh MW, Wang Y (2008) Applications of CE SDS gel in development of biopharmaceutical antibody-based products. Electrophoresis 29(17):3612–3620

    Article  PubMed  CAS  Google Scholar 

  • Salas-Solano O, Tomlinson B, Du S, Parker M, Strahan A, Ma S (2006) Optimization and validation of a quantitative capillary electrophoresis sodium dodecyl sulfate method for quality control and stability monitoring of monoclonal antibodies. Anal Chem 78(18):6583–6594

    Article  PubMed  CAS  Google Scholar 

  • Salman A, Erukhimovitch V, Talyshinsky M, Huleihil M, Huleihel M (2002) FTIR spectroscopic method for detection of cells infected with herpes viruses. Biopolymers 67(6):406–412

    Article  PubMed  CAS  Google Scholar 

  • Saluja A, Kalonia DS (2008) Nature and consequences of protein-protein interactions in high protein concentration solutions. Int J Pharm 358(1–2):1–15

    Article  PubMed  CAS  Google Scholar 

  • Sauerbrey G (1959) Use of quartz vibration for weighing thin films on a microbalance. J Phys 155:206–212

    CAS  Google Scholar 

  • Schmitt C, Bovay C, Rouvet M, Shojaei-Rami S, Kolodziejczyk E (2007) Whey protein soluble aggregates from heating with NaCl: physicochemical, interfacial, and foaming properties. Langmuir 23(8):4155–4166

    Article  PubMed  CAS  Google Scholar 

  • Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ­ultracentrifugation and lamm equation modeling. Biophys J 78(3):1606–1619

    Article  PubMed  CAS  Google Scholar 

  • Schuck P (2004) A model for sedimentation in inhomogeneous media. II. Compressibility of aqueous and organic solvents. Biophys Chem 108(1–3):201–214

    Article  PubMed  CAS  Google Scholar 

  • Sejersen M, Salomonsena T, Ipsen R, Clark R, Rolin C, Engelsen S (2007) Zeta potential of pectin-­stabilised casein aggregates in acidified milk drinks. Int Dairy J 17:302–307

    Article  CAS  Google Scholar 

  • Shapiro HM (1995) Practical flow cytometry. Wiley-Liss, New york

    Google Scholar 

  • Sharma DK, Oma P, Pollo MJ, Sukumar M (2010a) Quantification and characterization of subvisible proteinaceous particles in opalescent mAb formulations using micro-flow imaging. J Pharm Sci 99(6):2628–2642

    PubMed  CAS  Google Scholar 

  • Sharma DK, King D, Oma P, Merchant C (2010b) Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J 12(3):455–464

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Afonina N, Awwad M et al (2010) An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci 99(8):3302–3321

    Article  PubMed  CAS  Google Scholar 

  • Strehl R, Rombach-Riegraf V, Diez M et al (2011) Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-­visible particles in microflow imaging analysis. Pharm Res 27:1–9

    Google Scholar 

  • Sutter M, Oliveira S, Sanders NN et al (2007) Sensitive spectroscopic detection of large and denatured protein aggregates in solution by use of the fluorescent dye Nile red. J Fluoresc 17(2):181–192

    Article  PubMed  CAS  Google Scholar 

  • Thillaivinayagalingam P, Gommeaux J, McLoughlin M, Collins D, Newcombe AR (2010) Biopharmaceutical production: Applications of surface plasmon resonance biosensors. J Chromatogr B Analyt Technol Biomed Life Sci 878(2):149–153

    Article  PubMed  CAS  Google Scholar 

  • Tobler SA, Fernandez EJ (2002) Structural features of interferon-gamma aggregation revealed by hydrogen exchange. Protein sci 11(6):1340–1352

    Article  PubMed  CAS  Google Scholar 

  • Torraca G, Wen Z (2005) Forensic investigation of biopharmaceutical manufacturing incidents by light microscopy, ftir microscopy, scanning electron microscopy and energy dispersive X-ray spectrometry. Microsc Microanal 11:1224–1225

    Article  Google Scholar 

  • Tyagi AK, Randolph TW, Dong A, Maloney KM, Hitscherich C Jr, Carpenter JF (2009) IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles. J Pharm Sci 98(1):94–104

    Article  PubMed  CAS  Google Scholar 

  • Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJ (2010) Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev 39(5):1633–1655

    Article  PubMed  CAS  Google Scholar 

  • Uskokovic V, Castiglione Z, Cubas P, Zhu L, Li W, Habelitz S (2010) Zeta-potential and particle size analysis of human amelogenins. J Dent Res 89(2):149–153

    Article  PubMed  CAS  Google Scholar 

  • Van Buren N, Rehder D, Gadgil H, Matsumura M, Jacob J (2009) Elucidation of two major aggregation pathways in an IgG2 antibody. J Pharm Sci 98(9):3013–3030

    Article  PubMed  CAS  Google Scholar 

  • van Duijn E (2010) Current limitations in native mass spectrometry based structural biology. J Am Soc Mass Spectrom 21(6):971–978

    Article  PubMed  CAS  Google Scholar 

  • Wall J, Solomon A (1999) Flow cytometric characterization of amyloid fibrils. Methods Enzymol 309:460–466

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Nema S, Teagarden D (2010) Protein aggregation–pathways and influencing factors. Int J Pharm 390(2):89–99

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Abzalimov RR, Kaltashov IA (2011) Direct monitoring of heat-stressed biopolymers with temperature-controlled electrospray ionization mass spectrometry. Anal Chem 83(8):2870–2876

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Johnson AJ, Kaltashov IA (2012) Evaluation of electrospray ionization mass spectrometry as a tool for characterization of small soluble protein aggregates. Anal Chem 84(3):1718–1724

    Article  CAS  Google Scholar 

  • Watson JT, Sparkman OD (2008) Introduction to mass spectrometry: instrumentation, applications, and strategies for data interpretation. Wiley, Chichester

    Google Scholar 

  • Wear MA, Patterson A, Malone K, Dunsmore C, Turner NJ, Walkinshaw MD (2005) A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A. Anal Biochem 345(2):214–226

    Article  PubMed  CAS  Google Scholar 

  • Wen J, Arakawa T, Philo JS (1996) Size-exclusion chromatography with on-line light-scattering, absorbance and refractive index detectors for studying proteins and their interactions. Anal Biochem 240:155–166

    Article  PubMed  CAS  Google Scholar 

  • Wuchner K, Büchler J, Spycher R, Dalmonte P, Volkin DB (2010) Development of a microflow digital imaging assay to characterize protein particulates during storage of a high concentration IgG1 monoclonal antibody formulation. J Pharm Sci 99(8):3343–3361

    Article  PubMed  CAS  Google Scholar 

  • Ye H (2006) Simultaneous determination of protein aggregation, degradation, and absolute molecular weight by size exclusion chromatography-multiangle laser light scattering. Anal Biochem 356(1):76–85

    Article  PubMed  CAS  Google Scholar 

  • Yohannes G, Jussila M, Hartonen K, Riekkola ML (2011) Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles. J Chromatogr A 1218:4104–4116

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Qi W, Singh SK, Fernandez EJ (2011) A new approach to explore the impact of freeze-­thaw cycling on protein structure: hydrogen/deuterium exchange mass spectrometry (HX-MS). Pharm Res 28(5):1179–1193

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Singh SK, Shirts MR, Kumar S, Fernandez EJ (2012) Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharm Res 29(1):236–250

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Volkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, T., Joshi, S.B., Kumru, O.S., Telikepalli, S., Middaugh, C.R., Volkin, D.B. (2013). Case Studies Applying Biophysical Techniques to Better Characterize Protein Aggregates and Particulates of Varying Size. In: Narhi, L. (eds) Biophysics for Therapeutic Protein Development. Biophysics for the Life Sciences, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4316-2_9

Download citation

Publish with us

Policies and ethics