Skip to main content

Abstract

A 3D Visco hyperelastic model is discussed and validated using a rich and rigorous data base obtained on PMMA above Tg. Inelastic phenomena are accounted for as an evolution of internal variables assumed to be related to entanglements. Inelastic strain-rate is deduced from energy balance between elastic and dissipative phenomenon. The concept allowing introducing time effects in any rubber elasticity theory, is used with Edward-Vilgis’ model. Extended model allows reproducing most of the visco-elastic phenomena in polymer: strain rate dependence, hysteretic effects and relaxation. An accounting for temperature and strain-rate by an “a priori” uses of time temperature superposition principle is also proposed. The three concepts result in an original and attractive model of high efficiency. This is demonstrated in the case of PMMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaboche J-L (1997) Int J Solids Struct 34:2239

    Article  MATH  Google Scholar 

  2. Germain P, Nguyen Q, Suquet P (1983) J Appl Mech 50:1010

    Article  MATH  Google Scholar 

  3. Arruda E, Boyce M (1993) J Mech Phys Solids 41:389

    Article  Google Scholar 

  4. Arruda E, Boyce M, Jayachandran R (1995) Mech Mater 19:193

    Article  Google Scholar 

  5. Wu PD, van der Giessen E (1993) J Mech Phys Solids 41:427

    Article  MATH  Google Scholar 

  6. Septanika EG, Ernst LJ (1998) Mech Mater 30:265

    Article  Google Scholar 

  7. Sweeney J (1999) Comput Theor Polym Sci 9:27

    Article  Google Scholar 

  8. Ball R, Doi M, Edwards S, Warner M (1981) Polymer 22:1010

    Article  Google Scholar 

  9. Edwards SF, Vilgis T (1986) Polymer 27:483

    Article  Google Scholar 

  10. Sweeney J, Naz SP, Coates D (2009) J Appl Polym Sci 111:1190

    Article  Google Scholar 

  11. Sweeney J, Spares R, Woodhead M (2009) Polym Eng Sci 49:1902

    Article  Google Scholar 

  12. Sweeney J, Ward IM (1996) J Mech Phys Solids 44:1033

    Article  Google Scholar 

  13. Buckley CP, Jones D (1995) Polymer 36:3301

    Article  Google Scholar 

  14. Buckley CP, Jones D (1996) Polymer 37:2403

    Article  Google Scholar 

  15. Dooling PJ, Buckley CP, Rostami S, Zahlan N (2002) Polymer 43:2451

    Article  Google Scholar 

  16. Gorlier E, Agassant J-F, Haudin J-M, Billon N (2001) Plast Rubber Compos 30:48

    Article  Google Scholar 

  17. Sweeney J, Ward IM (1995) J Rheol 39:861

    Article  Google Scholar 

  18. Lai D, Yakimets I, Guignon M (2005) Mat Sci Eng A 405:266

    Article  Google Scholar 

  19. Drozdov AD, Agarwal S, Gupta R (2004) Comp Mat Sci 29:195

    Article  Google Scholar 

  20. Drozdov AD (2006) Compos Sci Technol 66:2648

    Article  Google Scholar 

  21. Drozdov AD, de Christiansen JC (2009) Int J Fract 159:63

    Article  Google Scholar 

  22. Drozdov AD, de Christiansen JC (2008) Int J Solids Struct 45:4274

    Article  MATH  Google Scholar 

  23. Drozdov AD, Christiansen J (2009) Int J Solids Struct 46:2298

    Article  MATH  Google Scholar 

  24. Richeton J, Ahzi S, Vecchio KS, Jiang FC, Makradi A (2007) Int J Solids Struct 44:7938

    Article  MATH  Google Scholar 

  25. Richeton J, Ahzi S, Daridon L, Rémond Y (2005) Polymer 46:6035

    Article  Google Scholar 

  26. Septanika EG, Ernst LJ (1998) Mech Mater 30:253

    Article  Google Scholar 

  27. Septanika EG, Ernst LJ (1998) Mech Mater 30:265

    Article  Google Scholar 

  28. Baquet E (2011) Ph.D. thesis. Mines-ParisTech, France

    Google Scholar 

  29. Billon N (2012) J Appl Polym Sci (in press)

    Google Scholar 

Download references

Acknowledgements

This work was conducted thanks to The European Commission and its support under the Framework 6 Program via the Apt-Pack strep project (STREP 505204-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noëlle Billon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics

About this paper

Cite this paper

Billon, N. (2013). New Thermo-Mechanical Modelling for Visco Elastic, Visco Plastic Polymers. In: Antoun, B., Qi, H., Hall, R., Tandon, G., Lu, H., Lu, C. (eds) Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4241-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4241-7_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4240-0

  • Online ISBN: 978-1-4614-4241-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics