Skip to main content

Metabolic Modification of Ascorbate in Plants

  • Chapter
  • First Online:
Ascorbic Acid in Plants

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

  • 1176 Accesses

Abstract

Ascorbate is the major soluble antioxidant found in plants and is also an essential component of human nutrition. Evidence suggests that the plasma levels of ascorbate in large sections of the population are sub-optimal for the health protective effects of this vitamin. Elucidation of the ascorbate biosynthetic pathway now opens the way to manipulating ascorbate accumulation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  2. Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum 126: 343–355

    Google Scholar 

  3. Fossati T, Solinas N, Porro D, Branduardi P (2011) L-ascorbic acid producing yeasts learn from plants how to recycle it. Metab Eng 13:177–185

    Article  PubMed  CAS  Google Scholar 

  4. Qian WQ, Yu CM, Qin HJ, Liu X, Zhang AM, Johansen IE, Wang DW (2007) Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413

    Article  PubMed  CAS  Google Scholar 

  5. Badejo AA, Eltelib HA, Fukunaga K, Fujikawa Y, Esaka M (2009) Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol 50:423–428

    Article  PubMed  CAS  Google Scholar 

  6. Zhang CJ, Liu JX, Zhang YY, Cai XF, Gong PJ, Zhang JH, Wang TT, Li HX, Ye ZB (2011a) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  PubMed  CAS  Google Scholar 

  7. Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Nat Acad Sci U S A 104:9534–9539

    Article  CAS  Google Scholar 

  8. Bulley SM, Rassam M, Hoser D, Otto W, Schunemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    Article  PubMed  CAS  Google Scholar 

  9. Pateraki I, Sanmartin M, Kalamaki MS, Gerasopoulos B, Kanellis AK (2004) Molecular characterization and expression studies during melon fruit development and ripening of L-galactono-1,4-lactone dehydrogenase. J Exp Bot 55:1623–1633

    Article  PubMed  CAS  Google Scholar 

  10. Zou LP, Li HX, Ouyang B, Zhang JH, Ye ZB (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

    Article  CAS  Google Scholar 

  11. Liu YH, Yu L, Wang RZ (2011) Level of ascorbic acid in transgenic rice for L-galactono-1,4-lactone dehydrogenase overexpressing or suppressed is associated with plant growth and seed set. Acta Physiol Plant 33:1353–1363

    Article  CAS  Google Scholar 

  12. Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78

    Article  CAS  Google Scholar 

  13. Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  PubMed  CAS  Google Scholar 

  14. Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  PubMed  CAS  Google Scholar 

  15. Hemavathi, Upadhyaya CP, Young KE, Akula N, Kim HS, Heung JJ, Oh OM, Aswath CR, Chun SC, Kim DH, Park SW (2009) Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177: 659–667

    Google Scholar 

  16. Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Nat Acad Sci U S A 100:3525–3530

    Article  CAS  Google Scholar 

  17. Qin AG, Shi QH, Yu XC (2011) Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38:1557–1566

    Article  PubMed  CAS  Google Scholar 

  18. Eltelib HA, Fujikawa Y, Esaka M (2012) Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S Afr J Bot 78:295–301

    Article  CAS  Google Scholar 

  19. Zhang YY, Li HX, Shu WB, Zhang CJ, Ye ZB (2011b) RNA interference of a mitochondrial APX gene improves vitamin C accumulation in tomato fruit. Sci Hort 129:220–226

    Article  CAS  Google Scholar 

  20. Zhang YY, Li HX, Shu WB, Zhang CJ, Zhang W, Ye ZB (2011c) Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Mol Biol Rep 29:638–645

    Article  CAS  Google Scholar 

  21. Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389

    Article  PubMed  CAS  Google Scholar 

  22. Keller R, Springer F, Renz A, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

    Article  PubMed  CAS  Google Scholar 

  23. Gatzek S (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate-synthesis and reveals light modulated L-galactose synthesis. Plant J 31:541–553

    Article  Google Scholar 

  24. Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851

    Article  PubMed  CAS  Google Scholar 

  25. Linster CL, Clarke SG (2008) L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13:567–573

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author

About this chapter

Cite this chapter

Zhang, Y. (2013). Metabolic Modification of Ascorbate in Plants. In: Ascorbic Acid in Plants. SpringerBriefs in Plant Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4127-4_10

Download citation

Publish with us

Policies and ethics