Skip to main content

Metabolic Engineering of Isoprenoid Production: Reconstruction of Multistep Heterologous Pathways in Tractable Hosts

  • Chapter
  • First Online:
Isoprenoid Synthesis in Plants and Microorganisms

Abstract

Isoprenoids represent a wide group of chemically active compounds that can find a wide range of applications as flavors, perfumes, vitamins, nutraceuticals, and pharmaceuticals. Many isoprenoids are naturally produced in very low quantities by plants, which make their use in broader perspectives difficult. Microbial production of plant-originating isoprenoids quickly appeared as an alternative of choice. Metabolic engineering methods were applied and proved successful to improve the supply of precursors to derive toward isoprenoid compounds of interest. Combinations between metabolic engineering and the flourishing field of synthetic biology have also been observed with researchers attempting to reconstruct and optimize complex biosynthetic pathways in well-characterized and tractable microbial hosts. In this chapter, we review recent metabolic engineering studies for isoprenoid production in yeast and try to show, through key examples, that the fields of synthetic biology and metabolic engineering can go hand in hand to establish microbial cell factories for isoprenoid production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajikumar PK, Xia WH, Tyo KE et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  PubMed  CAS  Google Scholar 

  • Albertsen L, Chen Y, Bach LS et al (2011) Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 77:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E et al (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  PubMed  CAS  Google Scholar 

  • Asadollahi MA, Maury J, Møller K et al (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99:666–677

    Article  PubMed  CAS  Google Scholar 

  • Asadollahi MA, Maury J, Patil KR et al (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11:328–334

    Article  PubMed  CAS  Google Scholar 

  • Asadollahi MA, Maury J, Schalk M et al (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccaromyces cerevisiae. Biotechnol Bioeng 106:86–96

    PubMed  CAS  Google Scholar 

  • Carretero-Paulet L, Ahumada I, Cunillera N et al (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Carretero-Paulet L, Cairó A, Botella-Pavía P et al (2006) Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol Biol 62:683–695

    Article  PubMed  CAS  Google Scholar 

  • Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    Article  PubMed  CAS  Google Scholar 

  • Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes and diterpenes. In: Leeper F, Vederas JC (eds) Topics in current chemistry: biosynthesis- aromatic polyketides, isoprenoids, alkaloids, vol 209. Springer, Heidelberg, pp 53–95

    Google Scholar 

  • DeJong JM, Liu Y, Bollon AP et al (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224

    Article  PubMed  CAS  Google Scholar 

  • Dumas B, Brocard-Masson C, Assemat-Lebrun K et al (2006) Hydrocortisone made in yeast: metabolic engineering turns a unicellular microorganism into a drug-synthesizing factory. Biotechnol J 1:299–307

    Article  PubMed  CAS  Google Scholar 

  • Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10:201–206

    Article  PubMed  CAS  Google Scholar 

  • Erdeniz N, Mortensen UH, Rothstein R (1997) Cloning-free PCR-based allele replacement methods. Genome Res 7:1174–1183

    PubMed  CAS  Google Scholar 

  • Flagfeldt DB, Siewers V, Huang L et al (2009) Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26:545–551

    Article  PubMed  Google Scholar 

  • Guevara-García A, San Román C, Arroyo A et al (2005) Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. Plant Cell 17:628–643

    Article  PubMed  Google Scholar 

  • Holanda Pinto SA, Pinto LMS, Cunha GMA et al (2008) Anti-inflammatory effect of α, β-amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis. Inflammopharmacology 16:48–52

    Article  PubMed  CAS  Google Scholar 

  • Horwitz SB (1994) How to make Taxol from scratch. Nature 367:593–594

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Roessner CA, Croteau R et al (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242

    Article  PubMed  CAS  Google Scholar 

  • Jackson BE, Hart-Wells EA, Matsuda SPT (2003) Metabolic engineering to produce sesquiterpenes in yeast. Org Lett 5:1629–1632

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  PubMed  CAS  Google Scholar 

  • Kingston DGI (2001) Taxol, a molecule for all seasons. Chem Commun 1:867–880

    Article  Google Scholar 

  • Kirby J, Romanini DW, Paradise EM et al (2008) Engineering triterpene production in Saccharomyces cerevisiae- β-amyrin synthase from Artemisia annua. FEBS J 275:1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Kizer L, Pitera DJ, Pfleger BF et al (2008) Application of functional genomics to pathway optimization for increased isoprenoid production. Appl Environ Microbiol 74:3229–3241

    Article  PubMed  CAS  Google Scholar 

  • Krivoruchko A, Siewers V, Nielsen J (2011) Opportunities for yeast metabolic engineering: Lessons from synthetic biology. Biotechnol J 6:262–276

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA et al (2005) Evolutionary engineering of mixed sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  PubMed  CAS  Google Scholar 

  • Lamacka M, Sajbidor J (1997) Ergosterol determination in Saccharomyces cerevisiae. Comparison of different methods. Biotechnol Tech 11:723–725

    Article  CAS  Google Scholar 

  • Leak FW Jr, Tove S, Parks LW (1999) In yeast, upc2-1 confers a decrease in tolerance to LiCl and NaCl, which can be suppressed by the P-type ATPase encoded by ENA2. DNA Cell Biol 18:133–139

    Article  PubMed  CAS  Google Scholar 

  • Lindahl A-L, Olsson ME, Mercke P et al (2006) Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae. Biotechnol Lett 28:571–580

    Article  PubMed  CAS  Google Scholar 

  • Lois LM, Campos N, Putra SR et al (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci USA 95:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST et al (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 7:796–802

    Article  Google Scholar 

  • Maury J, Asadollahi MA, Møller K et al (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19–51

    PubMed  CAS  Google Scholar 

  • Maury J, Asadollahi MA, Formenti LR et al (2008) Reconstruction of a bacterial isoprenoid biosynthetic pathway in Saccharomyces cerevisiae. FEBS Lett 582:4032–4038

    Article  PubMed  CAS  Google Scholar 

  • Meyer S, Oswald M, Fischer M et al (2011) Metabolic engineering of monoterpenoids production in yeast (this volume)

    Google Scholar 

  • Miura Y, Kondo K, Shimada H et al (1998a) Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol Bioeng 58:306–308

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Kondo K, Saito T et al (1998b) Production of carotenoids lycopene, ß-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64:1226–1229

    PubMed  CAS  Google Scholar 

  • Newman JD, Marshall J, Chang M et al (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95:684–691

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Article  PubMed  CAS  Google Scholar 

  • Oswald M, Fischer M, Dirninger N et al (2007) Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 7:413–421

    Article  PubMed  CAS  Google Scholar 

  • Paddon CJ, McPhee D, Westfall PJ et al (2011) Microbially-derived semi-synthetic artemisinin (this volume)

    Google Scholar 

  • Paetzold H, Garms S, Bartram S et al (2010) The isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Mol Plant 3:904–916

    Article  PubMed  CAS  Google Scholar 

  • Parekh RN, Shaw MR, Wittrup KD (1996) An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae. Biotechnol Prog 12:16–21

    Article  PubMed  CAS  Google Scholar 

  • Partow S, Siewers V, Bjorn S et al (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955–964

    Article  PubMed  CAS  Google Scholar 

  • Pfleger BF, Pitera DJ, Smolke CD et al (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Pitera DJ, Paddon CJ, Newman JD et al (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  PubMed  CAS  Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Villalón A, Pérez-Gil J, Rodríguez-Concepción M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J Biotechnol 135:78–84

    Article  PubMed  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169

    PubMed  CAS  Google Scholar 

  • Seetang-Nun Y, Sharkey TD, Suvachittanont W (2008) Isolation and characterization of two distinct classes of DXS genes in Hevea brasiliensis. DNA Seq 19:291–300

    PubMed  CAS  Google Scholar 

  • Shiba Y, Paradise EM, Kirby J et al (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Kondo K, Fraser PD et al (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

    PubMed  CAS  Google Scholar 

  • Soldi C, Pizzolatti MG, Luiz AP et al (2008) Synthetic derivatives of the α- and β-amyrin triterpenes and their antinociceptive properties. Bioorg Med Chem 16:3377–3386

    Article  PubMed  CAS  Google Scholar 

  • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobis growth on xylose. Appl Environ Microbiol 69:1990–1998

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G, Aristidou A, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic, San Diego

    Google Scholar 

  • Szczebara FM, Chandelier C, Villeret C et al (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 2:143–149

    Article  Google Scholar 

  • Takahashi S, Yeo Y, Greenhagen BT et al (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97:170–181

    Article  PubMed  CAS  Google Scholar 

  • Tochigi Y, Sato N, Sahara T et al (2010) Sensitive and convenient yeast reporter assay for high-throughput analysis by using a secretory luciferase from Cypridina noctiluca. Anal Chem 82:5768–5776

    Article  Google Scholar 

  • Tsuruta H, Paddon CJ, Eng D et al (2009) High level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2):e4489

    Article  PubMed  Google Scholar 

  • Vadali RV, Fu Y, Bennett GN et al (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog 21:1558–1561

    Article  PubMed  CAS  Google Scholar 

  • Verwaal R, Wang J, Meijnen J-P et al (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Article  PubMed  CAS  Google Scholar 

  • Walter MH, Hans J, Strack D (2002) Two distantly related genes encoding 1-deoxy-D-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 31: 243–254

    Article  PubMed  CAS  Google Scholar 

  • Walter MH, Floß DS, Paetzold H et al (2011) Control of plastidial isoprenoid precursor supply: divergent 1-deoxy-D-xylulose 5 phosphate synthase (DXS) isogenes regulate the allocation to primary or secondary metabolism (this volume)

    Google Scholar 

  • Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M et al (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73:4881–4891

    Article  PubMed  CAS  Google Scholar 

  • Wolfertz M, Sharkey TD, Boland W et al (2004) Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis. Plant Physiol 135: 1939–1945

    Article  PubMed  CAS  Google Scholar 

  • Yamano S, Ishii T, Nakagawa M et al (1994) Metabolic engineering for production of ß-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58:1112–1114

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Lee YM, Kim JE et al (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Park HM, Kim JE et al (2007) Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol Prog 23: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Zahiri HS, Yoon SH, Keasling JD et al (2006) Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab Eng 8:406–416

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Firmenich SA for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Maury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maury, J., Asadollahi, M.A., Formenti, L.R., Schalk, M., Nielsen, J. (2012). Metabolic Engineering of Isoprenoid Production: Reconstruction of Multistep Heterologous Pathways in Tractable Hosts. In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_6

Download citation

Publish with us

Policies and ethics