Skip to main content

Electrochemical Machining

  • Chapter
  • First Online:
Advanced Analysis of Nontraditional Machining
  • 2974 Accesses

Abstract

Electrochemical machining has attracted increasing attention for micro-machining applications. The first section discusses a process to erode a hole of hundreds of microns diameter in a metal surface using a moving electrode. The discussion provides a method to predict the enlargement of the produced hole and to taper under the applied machining conditions. A computational model illustrates how the machined profile develops over time and as the electrode gap changes. The analysis is based on Faraday’s laws of electrolysis and the mathematical integral describing a tool. The effectiveness of the model is tested by experiments that apply several electrode movement schemes.

This chapter discusses the surface roughness of several common die materials produced by traditional machining, whereby the internal and external cylindrical surface are electropolished by different electrode designs. Electropolishing efficiency of die materials and parts should be high to improve surface roughness in the shortest amount of time possible, thereby reducing surface residual stresses. The study aims to identify an optimal electrode design, which will help broaden electromachining applications in the future. For electropolishing of internal holes, completely inserted feeding electrodes are supplied with both continuous and pulsed direct current. In the external electropolishing studies, we consider the design of the turning tool electrode, arrowhead electrode, ring-form electrode, and disc-form electrode. For internal electropolishing, an electrode featuring a helix discharge flute performs better than that without a flute or with a straight flute. The borer type electrode performs better an electrode with a lip on the leading edge. Pulsed direct current can improve the polishing, but the machining time and costs are increased. In the case of external electropolishing, a smaller nose radius or end radius produces greater current density and provides a faster feed rate and better polishing. Ultrasonic-aided electropolishing improves the polishing effect with no increase in machining time, thus improving efficiency and reducing costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fortana MG (1986) Corrosion engineering. McGraw-Hill, New York

    Google Scholar 

  2. Jain VK, Pandey PC (1980) Precis Eng 2:195–206

    Article  Google Scholar 

  3. Rajurkr KP et al (1992) J Mater Proc Technol 35:83–91

    Article  Google Scholar 

  4. Riggo OL, ad Locke CE (1981) Anodic protection. Plenum Press, New York

    Book  Google Scholar 

  5. McGeough JA (1974) Principle of electrochemical machining. Chapman & Hall, London

    Google Scholar 

  6. Bhattacharyya B, Doloi B, Sridhar PS (2001) J Mater Proc Technol 113:301–305

    Article  Google Scholar 

  7. Kunieda M, Yoshida M, Yoshida H (1993) ASME 64:693–699

    Google Scholar 

  8. Datta M, Shenoy RV, Romankiw LT (1993) ASME 64:675–692

    Google Scholar 

  9. Masuzawa T, Tonshoff HK (1997) Annals of the CIRP 46/2:621–628

    Article  Google Scholar 

  10. Hardisty H, Mileham AR, Shirvani H (1995) Proc Instn Mech Engrs 210:109–118

    Google Scholar 

  11. Reddy MS, Jain VK, Lai GK (1988) J Eng Ind 110:111–118

    Article  Google Scholar 

  12. Kőnig W, Humbs HH (1977) Annals of the CIRP 26/1:83–86

    Google Scholar 

  13. Narayanan OH, Hinduja S, Noble CF (1980) Int J Mach Tool Des Res 26:323–338

    Article  Google Scholar 

  14. De Silva AKM, Altena HSJ, McGeough JA (2000) Annals of the CIRP 49/1:151–155

    Article  Google Scholar 

  15. Misra VN, Khangaonkar PR, Dokras VM (1971) J Sci Ind Res 30:342–348

    Google Scholar 

  16. Hopenfeld J, Cole RR (1966) ASME J Eng Ind 88(4):455–461

    Google Scholar 

  17. McGeough JA (1974) Principles of electrochemical machining. Chapman and Hall, London

    Google Scholar 

  18. McGeough JA (1988) Advanced methods of machining. Chapman and Hall, London

    Google Scholar 

  19. De Silva A, Mcgeough JA (1986) Proc Instn Mech Engrs 200(B4):237–246

    Google Scholar 

  20. Jain VK, Nanda VN (1986) Precis Eng 8(1):27–33

    Article  Google Scholar 

  21. Hopenfeld J, Cole RR (1969) ASME J Eng Ind 91(3):755–763

    Google Scholar 

  22. Hoare JP, LaBoda MA (1969) Electrochem Sci 16(2):199–203.

    Google Scholar 

  23. Phillips RE (1986) Carbide and Tool Journal 18(6):12–14

    Google Scholar 

  24. Wilson J (1971) Practice and theory of electrochemical Machining. John Wiley, New York, pp 79–161

    Google Scholar 

  25. Dietz H, Gunther KG, Otto K (1973) Annals of the CIRP 22(1):61–62

    Google Scholar 

  26. Risko DG (1992) Society of manufacturing engineers, technical papers, pp 192–225

    Google Scholar 

  27. Rasch FO et al (1978) Anneals of the CIRP 27(2):561–563

    Google Scholar 

  28. Kashcheev VD, Merkulova NS, Davydov AD (1966) Applied Electrical Phenomena 5:207–214

    Google Scholar 

  29. Rybalko AV, Dikusar AI (1995) ISEM-XI. pp 491–504

    Google Scholar 

  30. Datta M, Landolt D (1983) J Appl Electrochem 13:795–802

    Article  Google Scholar 

  31. Fadaie-Tehrani A, Atkinson J (1995) ISEM-XI, pp 543–552

    Google Scholar 

  32. Chin D-T, Mao K-W (1974) J Appl Electrochem 4:155–161

    Article  Google Scholar 

  33. Noto K, Okudairira H, Kawafune K (1973) Annals of the CIRP 22:63–66

    Google Scholar 

  34. Radhakrishnan V, Krishnaiah Chetty OV, Achyutha BT (1980) Wear 68(1):1–6

    Article  Google Scholar 

  35. LaBada MA, Mc Millan LM (1967) Electro Technol 5(7–8):340–345

    Google Scholar 

  36. Mileham AR, Harrey SJ, Stout KJ (1986) Wear 109:207–214

    Article  Google Scholar 

  37. Datta M, Landolt D (1981) Elector Acta 26(7):899–907

    Article  Google Scholar 

  38. Bejar MA, Gutierrez F (1993) J Mat Proc Technol 37:691–699

    Article  Google Scholar 

  39. Bannard J (1977) J Appl Electrochem 7:267–270

    Article  Google Scholar 

  40. Fadaie-Tehrani A, Atkinson J (1995) ISEM-XI, pp 543–552

    Google Scholar 

  41. LaBada MA, Mc Millan LM (1967) Electro Technol 5(7–8):340–345

    Google Scholar 

  42. Shen WM (1995) The study of polishing of electric discharge-machined mold with ECM, M.Sc. Thesis, National Yunlin Institute of Technology, Taiwan

    Google Scholar 

  43. Rajurkar KR (1995) Annals of the CIRP 44:177–180

    Article  Google Scholar 

  44. Chuchro M, Ruszaj A, Zybura-Skrabalak M (1995) The influence of electrochemical disollution process conditions on machined surface geometry. The Institute of Metal Cutting, Cracow, Poland, pp 521–531

    Google Scholar 

  45. Acharya BG, Jain VK, Batra JL (1986) Precis Eng 8(2):88–96

    Article  Google Scholar 

  46. Louter SP, Cook NH (1973) J. Eng. for Industry 95(4):992–996

    Google Scholar 

  47. Masuzawa T (1987) Annals of the CIRP 36:123–126

    Article  Google Scholar 

  48. Budzynski AF (1986) ISEM8. Moscow

    Google Scholar 

  49. SaKai S, Masuzawa T, Itou S (1988) JSEME 22(43):18–28

    Google Scholar 

  50. Rozenberg LD, Kazemtsev VF, Makrov LO, Yakhimovich DF (1964) Ultrasonic cutting. Consultants Bureau, New York

    Google Scholar 

  51. Opitz H, Heitmann H, Becker-Barbrock V (1967) Annals of the CIRP 15:177–180

    Google Scholar 

  52. Wood RW (1927) Philosophical Magazine. 7 Sept 1927. pp 417–436

    Google Scholar 

  53. Shaw MC (1956) Microtechnic. 10(6):257–265;88–96

    Google Scholar 

  54. Dikushin VI, Barke VN (1958) Stanki i Instr 5:1058–1066

    Google Scholar 

  55. Komaraiah M, Manan MA, Narasimha Reddy P, Victor S (1988) Precis Eng 10(2):59–65

    Article  Google Scholar 

  56. Komaraiah M, Narasimha Reddy P (1991) Int J Prod Res 29(11):2177–2187

    Article  MATH  Google Scholar 

  57. Komaraiah M, Narasimha Reddy P (1993) Int J Mach Tools Manufact 33(3):495–505

    Article  Google Scholar 

  58. Khairy ABE (1990) Wear 137:187–198

    Article  Google Scholar 

  59. Wang B, Fang Z (1996) J Atmos Sci 53:2786–2802

    Article  Google Scholar 

  60. Gilmore R (1991) Seventh international Conference on computer-aided Production Engineering. vol 28(12), pp 139–148

    Google Scholar 

  61. Reddy MS et al (1988) J Eng Ind 110:111–118

    Article  Google Scholar 

  62. Hocheng H, Hsu CC (1995) J Mater Process Technol 48:255–266

    Article  Google Scholar 

  63. AZCUE JM (1995) Intern J Environ Anal Chem 62:137–145

    Article  Google Scholar 

  64. Watmough DJ (1993) Ultrasonic 32(4):315–317

    Article  Google Scholar 

  65. Institute of Advanced Manufacturing Sciences INC (1980) Machining data handbook. 3rd edn. vol 2(18) p 11

    Google Scholar 

  66. Hocheng H, Pa PS (1999) Electropolishing and electrobrightening of holes using different feeding electrodes. J Mater Process Technol 89–90:440

    Article  Google Scholar 

  67. Hocheng H, Pa PS (2003) Effective form design of electrode in electrochemical smoothing of holes. Int J Adv Manuf Technol 21(12):995

    Article  Google Scholar 

  68. Hocheng H, Pa PS (2002) The application of a turning tool as the electrode in electropolishing. J Mater Process Technol 120(1):6

    Article  Google Scholar 

  69. Hocheng H, Pa PS (2004) Design of arrow-head electrode in electropolishing of cylindrical part, research trends. Int J Mater Prod Technol 20(4):312

    Article  Google Scholar 

  70. Hocheng H, Pa PS (2000) Ring-form electrode in electropolishing of external cylindrical surface. Int J Elec Mach 5:7

    Google Scholar 

  71. Hocheng H, Pa PS (2003) Electropolishing of cylindrical workpiece of tool materials using disc-form electrodes. J Mater Process Technol 142(1):203

    Article  Google Scholar 

  72. Hocheng H, Pa PS (2003) Continuous secondary ultrasonic electropolishing of an SKD61 cylindrical part. Int J Adv Manuf Technol 21(4):238

    Article  Google Scholar 

  73. Hocheng H, Pa PS (2001) Electrode form design and ultrasonic aid in electropolishing of holes. JSEME: Int J Elec Mach 5:7

    Google Scholar 

  74. Hocheng H, Gao PS, Lin SC (2005) Generation of erosion profile of through hole in electrochemical boring using stepwise moving electrode. Int J Manuf Technol Manag 7(2–4):268–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Pa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pa, P.S., Hocheng, H. (2013). Electrochemical Machining. In: Hocheng, H., Tsai, HY. (eds) Advanced Analysis of Nontraditional Machining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4054-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4054-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4053-6

  • Online ISBN: 978-1-4614-4054-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics