Skip to main content

Scientific Satellite Spacecraft

  • Chapter
  • First Online:
Artificial Satellites and How to Observe Them

Part of the book series: Astronomers' Observing Guides ((OBSERVING))

  • 1058 Accesses

Abstract

Many satellites are designed to gather information on extraterrestrial bodies. We will call these “spacecraft.” One of the earliest spacecraft, Luna 3, imaged the far side of the Moon. The former USSR launched it on the second anniversary of Sputnik 1. Since 1959, the United States, the former USSR, Japan, China, India and the European Space Agency have launched spacecraft beyond Earth’s orbit. The main objective of these has been to gather scientific data. Some have enabled astronomers to better understand our Sun and how it heats Earth, while others have given us a better understanding of the processes at work on other planets. In this chapter, we will give an overview of the different types of spacecraft missions. Afterwards, we will describe seven specific spacecraft in detail. These seven and the countries/agencies that launched them are: Chang’e-1 (China), Chandrayaan-1 (India), Hayabusa (Japan), Hubble Space Telescope (United States), Cassini (United States and the European Space Agency), Spektr-R (Russia) and Gaia (European Space Agency).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe S, Mukai T, Hirata N et al (2006a) Mass and local topography measurements of Itokawa by Hayabusa. Science 312:1344–1347

    Article  ADS  Google Scholar 

  • Abe M, Takagi Y, Kitazato K et al (2006b) Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science 312:1334–1338

    Article  ADS  Google Scholar 

  • Atkins P, de Paula J (2002) Physical chemistry, 7th edn. W H Freeman and Company, New York

    Google Scholar 

  • Barabash S, Bhardwaj A, Wieser M et al (2009) Investigation of the solar wind – moon interaction onboard Chandrayaan-1 mission with the SARA experiment. Curr Sci 96:526–532

    Google Scholar 

  • Barnes JW, Brown RH, Soderblom JM et al (2009) Shoreline features of Titan’s Ontario Lacus from Cassini/VIMS observations. Icarus 201:217–225

    Article  ADS  Google Scholar 

  • Beatty JK (2001) NEAR falls for Eros. Sky Telesc 101(5):34–37

    ADS  Google Scholar 

  • Beatty JK (2006a) Hayabusa mission gets long delay. Sky Telesc 111(3):24

    Google Scholar 

  • Beatty JK (2008) A Martian wonderland. Sky Telesc 116(4):22–24

    Google Scholar 

  • Beatty JK (2010a) NASA slams the moon. Sky Telesc 119(2):28–32

    Google Scholar 

  • Beatty JK, Chaikin A (1990) The new solar system, 3rd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bhandari N (2005) Chandrayaan-1: science goals. J Earth Syst Sci 114:699–709

    ADS  Google Scholar 

  • Bhardwaj A, Barabash S, Futaana Y et al (2005) Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission. J Earth Syst Sci 114:749–760

    Article  ADS  Google Scholar 

  • Blades JC (2008) Fixing Hubble one last time. Sky Telesc 116(4):26–31

    Google Scholar 

  • Brown RH, Baines KH, Bellucci G et al (2005) The Cassini visual and infrared mapping spectrometer (VIMS) investigation. Space Sci Rev 115:111–168

    Article  ADS  Google Scholar 

  • Brown RH, Soderblom LA, Soderblom JM et al (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454:607–610

    Article  ADS  Google Scholar 

  • Burchell MJ, Robin-Williams R, Foing BH (2010) The SMART-1 lunar impact. Icarus 207:28–38

    Article  ADS  Google Scholar 

  • Clery D (2011) Russia launches a telescope, decades in the making. Science 333:512

    Article  ADS  Google Scholar 

  • Dachev T, Tomov B, Dimitrov P et al (2009) Monitoring lunar radiation environment: RADOM instrument on Chandrayaan-1. Curr Sci 96:544–546

    Google Scholar 

  • Dambeck T (2008) Gaia’s mission to the Milky Way. Sky Telesc 115(3):36–39

    Google Scholar 

  • Demura H, Kobayashi S, Nemoto E et al (2006) Pole and global shape of 25143 Itokawa. Science 312:1347–1349

    Article  ADS  Google Scholar 

  • Dougherty MK, Achilleos N, Andre N (2005) Cassini magnetometer observations during Saturn orbit insertion. Science 307:1266–1270

    Article  ADS  Google Scholar 

  • Dougherty MK, Kellock S, Southwood DJ et al (2004) The Cassini magnetic field investigation. Space Sci Rev 114:331–383

    Article  ADS  Google Scholar 

  • Elachi C, Allison MD, Borgarelli L et al (2005) Radar: the Cassini Titan radar mapper. Space Sci Rev 115:71–110

    Article  ADS  Google Scholar 

  • Esposito LW, Barth CA, Colwell JE et al (2005a) The Cassini ultraviolet imaging spectrograph investigation. Space Sci Rev 115:299–361

    Article  ADS  Google Scholar 

  • Esposito LW, Colwell JE, Larsen K et al (2005b) Ultraviolet imaging spectroscopy shows an active saturnian system. Science 307:1251–1255

    Article  ADS  Google Scholar 

  • Flasar FM, Achterberg RK, Conrath BJ et al (2005a) Temperatures, winds, and composition in the saturnian system. Science 307:1247–1251

    Article  ADS  Google Scholar 

  • Flasar FM, Kunde VG, Abbas MM et al (2005b) Exploring the Saturn system in the thermal infrared: the composite infrared spectrometer. Space Sci Rev 115:169–297

    Article  ADS  Google Scholar 

  • Foing BH, Racca GD, Marini A et al (2005) SMART-1 after lunar capture: first results and perspectives. J Earth Syst Sci 114:689–697

    Article  ADS  Google Scholar 

  • Fujiwara A, Kawaguchi J, Yeomans DK et al (2006) The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312:1330–1334

    Article  ADS  Google Scholar 

  • Galimov EM (2005) Luna-Glob project in the context of the past and present lunar exploration in Russia. J Earth Syst Sci 114:801–806

    Article  ADS  Google Scholar 

  • Goswami JN, Banerjee D, Bhandari N et al (2005) High energy X-ray spectrometer on the Chandrayaan-1 mission to the moon. J Earth Syst Sci 114:733–738

    Article  ADS  Google Scholar 

  • Grande M, Maddison BJ, Sreekumar P et al (2009) The Chandrayaan-1 x-ray spectrometer. Curr Sci 96:517–519

    Google Scholar 

  • Guerlet S, Fouchet T, Bézard B et al (2009) Vertical and meridional distribution of ethane, acetylene and propane in Saturn’s stratosphere from CIRS /Cassini limb observations. Icarus 203:214–232

    Article  ADS  Google Scholar 

  • Guerlet S, Fouchet T, Bézard B et al (2010) Meridional distribution of CH3C2H and C4H2 in Saturn’s stratosphere from CIRS/Cassini limb and nadir observations. Icarus 209:682–695

    Article  ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Hospodarksy GB et al (2005) Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307:1255–1259

    Article  ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Kirchner DL et al (2004) The Cassini radio and plasma pave investigation. Space Sci Rev 114:395–463

    Article  ADS  Google Scholar 

  • Huixian S, Shuwu D, Jianfeng Y et al (2005) Scientific objectives and payloads of Chang’E-1 lunar satellite. J Earth Syst Sci 114:787–794

    Article  ADS  Google Scholar 

  • Kamalakar JA, Bhaskar KVS, Prasad ASL et al (2005) Lunar ranging instrument for Chandrayaan-1. J Earth Syst Sci 114:725–731

    Article  ADS  Google Scholar 

  • Kamalakar JA, Prasad ASL, Bhaskar KVS et al (2009) Lunar laser ranging instrument (LLRI): a tool for the study of topography and gravitational field of the moon. Curr Sci 96:512–516

    Google Scholar 

  • Kempf S, Srama R, Postberg F et al (2005) Composition of saturnian stream particles. Science 307:1274–1276

    Article  ADS  Google Scholar 

  • Kliore AJ, Anderson JD, Armstrong JW et al (2005) Cassini radio science. Space Sci Rev 115:1–70

    Article  ADS  Google Scholar 

  • Krishna A, Gopinath NS, Hegde NS et al (2005) Imaging and power generation strategies for Chandrayaan-1. J Earth Syst Sci 114:739–748

    Article  ADS  Google Scholar 

  • Krimigis SM, Mitchell DG, Hamilton DC et al (2004) Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Sci Rev 114:233–329

    Article  ADS  Google Scholar 

  • Kumar ASK, Chowdhury AR (2005a) Terrain mapping camera for Chandrayaan-1. J Earth Syst Sci 114:717–720

    Article  ADS  Google Scholar 

  • Kumar ASK, Chowdhury AR (2005b) Hyper-spectral imager in visible and near-infrared band for lunar compositional mapping. J Earth Syst Sci 114:721–724

    Article  ADS  Google Scholar 

  • Kumar ASK, Chowdhury AR, Banerjee A et al (2009a) Terrain mapping camera: a stereoscopic high-resolution instrument on Chandrayaan-1. Curr Sci 96:492–495

    Google Scholar 

  • Kumar ASK, Chowdhury AR, Banerjee A et al (2009b) Hyper spectral imager for lunar mineral mapping in visible and near infrared band. Curr Sci 96:496–499

    Google Scholar 

  • Kumar Y, MIP Project Team (2009) The moon impact probe on Chandrayaan-1. Curr Sci 96:540–543

    Google Scholar 

  • Lide DR (ed) (2008) CRS handbook of chemistry and physics, 89th edn. CRS Press, Boca Raton, Editor in Chief

    Google Scholar 

  • Mall U, Banaszkiewic M, Bronstad K et al (2009) Near infrared spectrometer SIR-2 on Chandrayaan-1. Curr Sci 96:506–511

    Google Scholar 

  • McDowell J (2004) Mission update. Sky Telesc 108(6):26

    MathSciNet  Google Scholar 

  • McDowell J (2006e) Mission update. Sky Telesc 112(1):26

    MathSciNet  ADS  Google Scholar 

  • McDowell J (2006h) Mission update. Sky Telesc 112(5):22

    ADS  Google Scholar 

  • McDowell J (2007g) Mission update. Sky Telesc 114(3):20

    Google Scholar 

  • McDowell J (2007h) Mission update. Sky Telesc 114(4):17

    ADS  Google Scholar 

  • McDowell J (2008a) Mission update. Sky Telesc 115(2):19

    ADS  Google Scholar 

  • McDowell J (2008h) Mission update. Sky Telesc 116(3):15

    Google Scholar 

  • McDowell J (2008i) Mission update. Sky Telesc 116(4):18

    Google Scholar 

  • McDowell J (2009e) Mission update. Sky Telesc 117(5):20

    Google Scholar 

  • McDowell J (2009f) Mission update. Sky Telesc 117(6):16

    Google Scholar 

  • Nakamura T, Noguchi T, Tanaka M et al (2011) Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333:1113–1116

    Article  ADS  Google Scholar 

  • Narendranath S, Athiray PS, Sreekumar P et al (2011) Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray spectrometer (C1XS): results from the nearside southern highlands. Icarus 214:53–66

    Article  ADS  Google Scholar 

  • Narvaez P (2004) The magnetostatic cleanliness program for the cassini spacecraft. Space Sci Rev 114:385–394

    Article  ADS  Google Scholar 

  • Okada T, Shirai K, Yamamoto Y et al (2006) X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Sky Telesc 312:1338–1341

    Google Scholar 

  • Petersen CC, Brandt JC (1998) Hubble vision, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Pieters CM, Boardman J, Buratti B et al (2009) The moon mineralogy mapper (M3) on Chandrayaan-1. Curr Sci 96:500–505

    Google Scholar 

  • Porco CC, Baker BJ et al (2005a) Cassini imaging science: initial results on Saturn’s atmosphere. Science 307:1243–1247

    Article  ADS  Google Scholar 

  • Porco CC, West RA, Squyres S et al (2005b) Cassini imaging science: instrument characteristics and anticipated scientific investigations at Saturn. Space Sci Rev 115:363–497

    Article  ADS  Google Scholar 

  • Rappaport NJ, Iess L, Tortora P et al (2005) Gravity science in the saturnian system: the masses of Phoebe, Iapetus, Dione and Enceladus. Bull Am Astron Soc 37:704

    ADS  Google Scholar 

  • Redfern G (2009) Lunar fireworks. Sky Telesc 117(6):20–25

    Google Scholar 

  • Saito J, Miyamoto H, Nakamura R et al (2006) Detailed images of asteroid 25143 Itokawa from Hayabusa. Sky Telesc 312:1341–1344

    Google Scholar 

  • Schmude RW Jr (2010) Comets and how to observe them. Springer Science + Business Media, New York

    Book  Google Scholar 

  • Sierks H, Lamy P, Barbieri C et al (2011) Images of asteroid 21 lutetia: a remnant planetesimal from the early solar system. Science 334:487–490

    Article  ADS  Google Scholar 

  • (2011a) Sky Telesc 121(2):14, 16

    Google Scholar 

  • (2011b) Sky & Telescope 121(2):18

    Google Scholar 

  • Sparrow G (2009) Spaceflight. DK Publishing, New York

    Google Scholar 

  • Spudis P, Nozette S, Bussey B et al (2009) Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the moon. Curr Sci 96:533–539

    Google Scholar 

  • Srama R, Ahrens TJ, Altobelli N et al (2004) The Cassini cosmic dust analyzer. Space Sci Rev 114:465–518

    Article  ADS  Google Scholar 

  • Sreekumar P, Acharya YB, Umapathy CN et al (2009) High energy x-ray spectrometer on Chandrayaan-1. Curr Sci 96:520–525

    Google Scholar 

  • Stofan ER, Elachi C, Lunine JI et al (2007) The lakes of Titan. Nature 445:61–64

    Article  ADS  Google Scholar 

  • Tsuchiyama A, Uesugi M, Matsushima T et al (2011) Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith. Science 333:1125–1128

    Article  ADS  Google Scholar 

  • Tytell D (2005a) Titan: a whole new world. Sky Telesc 109(4):34–38

    Google Scholar 

  • Tytell D (2007) Postcards from Mars and Jupiter. Sky Telesc 113(6):16–17

    Google Scholar 

  • Waite JH Jr, Lewis WS, Kasprzak WT et al (2004) The Cassini ion and neutral mass spectrometer (INMS) investigation. Space Sci Rev 114:113–231

    Article  ADS  Google Scholar 

  • Watts RN Jr (1968) NASA‘s tenth anniversary. Sky Telesc 36:292–293

    ADS  Google Scholar 

  • Young DT, Berthelier JJ, Blanc M et al (2004) Cassini plasma spectrometer investigation. Space Sci Rev 114:1–112

    Article  ADS  Google Scholar 

  • Zhi-Jian Y, Li-Chang L, Yung-Chun L et al (2005) Space operation system for Chang’E program and its capability evaluation. J Earth Syst Sci 114:795–799

    Article  ADS  Google Scholar 

  • Zimmerman R (2000) The chronological encyclopedia of discoveries in space. Oryx Press, Phoenix

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmude, R. (2012). Scientific Satellite Spacecraft. In: Artificial Satellites and How to Observe Them. Astronomers' Observing Guides. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3915-8_2

Download citation

Publish with us

Policies and ethics