Skip to main content
  • 1848 Accesses

Abstract

Tumor growth and metastasis is dependent on a complex interplay between the tumor cells and the tumor stroma as well as tumor-tumor interaction. This communication occurs through direct interaction, secreted factors as well as microvesicles carrying proteins and nucleic acids. The tumor microvesicles carry a wide range of cargo, including oncogenic proteins, fragmented DNA, mRNA and non-coding RNA with regulatory functions that can be horizontallytransferred between different cells. In addition, these microvesicles are enriched in retrotransposable elements that have been implicated with genetic instability and transcriptional dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn K, Kim HS (2009) Structural and quantitative expression analyses of HERV gene family in human tissues. Mol Cells 28(2):99–103

    Article  PubMed  CAS  Google Scholar 

  2. Al-Nedawi K, Meehan B et al (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106(10):3794–3799

    Article  Google Scholar 

  3. Al-Nedawi K, Meehan B et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624

    Article  PubMed  CAS  Google Scholar 

  4. Amzallag N, Passer BJ et al (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112

    Article  PubMed  CAS  Google Scholar 

  5. Antonyak MA, Li B et al (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A 108(12):4852–4857

    Article  PubMed  CAS  Google Scholar 

  6. Baj-Krzyworzeka M, Szatanek R et al (2006) Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 55(7):808–818

    Article  PubMed  CAS  Google Scholar 

  7. Balaj L, Lessard R et al (2010) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    Article  Google Scholar 

  8. Belancio VP, Roy-Engel AM et al (2010) All y’all need to know ’bout retroelements in cancer. Semin Cancer Biol 20(4):200–210

    Article  PubMed  CAS  Google Scholar 

  9. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  PubMed  CAS  Google Scholar 

  10. Bergsmedh A, Szeles A et al (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci U S A 98(11):6407–6411

    Article  PubMed  CAS  Google Scholar 

  11. Bieda K, Hoffmann A et al (2001) Phenotypic heterogeneity of human endogenous retrovirus particles produced by teratocarcinoma cell lines. J Gen Virol 82(Pt 3):591–596

    PubMed  CAS  Google Scholar 

  12. Blond JL, Beseme F et al (1999) Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 73(2):1175–1185

    PubMed  CAS  Google Scholar 

  13. Coffin JM (1992) Structure and classification of retroviruses. Plenum, New York

    Google Scholar 

  14. Contreras-Galindo R, Kaplan MH et al (2008). Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol 82(19):9329–9336

    Article  Google Scholar 

  15. Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703

    Article  PubMed  CAS  Google Scholar 

  16. Coufal NG, Garcia-Perez JL et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131

    Article  PubMed  CAS  Google Scholar 

  17. Daskalos A, Nikolaidis G et al (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124(1):81–87

    Article  PubMed  CAS  Google Scholar 

  18. Doerfler W, Hohlweg U et al (2001) Foreign DNA integration–perturbations of the genome–oncogenesis. Ann N Y Acad Sci 945:276–288

    Article  PubMed  CAS  Google Scholar 

  19. Fang Y, Wu N et al (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158

    Article  PubMed  Google Scholar 

  20. Gan X, Gould SJ (2011) Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome/microvesicle proteins. Mol Biol Cell 22(6):817–830

    Article  PubMed  CAS  Google Scholar 

  21. Ginestra A, La Placa MD et al (1998) The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res 18(5A):3433–3437

    PubMed  CAS  Google Scholar 

  22. Goodier JL, Kazazian HH Jr (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1):23–35

    Article  PubMed  CAS  Google Scholar 

  23. Gould SJ, Booth AM et al (2003) The Trojan exosome hypothesis. Proc Natl Acad Sci U S A 100(19):10592–10597

    Article  PubMed  CAS  Google Scholar 

  24. Grange C, Tapparo M et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356

    Article  PubMed  CAS  Google Scholar 

  25. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  26. Kannian P, Green PL (2010) Human T lymphotropic virus type 1 (HTLV-1): molecular biology and oncogenesis. Viruses 2(9):2037–2077

    Article  PubMed  CAS  Google Scholar 

  27. Kidwell MG (1992) Horizontal transfer. Curr Opin Genet Dev 2(6):868–873

    Article  PubMed  CAS  Google Scholar 

  28. Klattenhoff C, Theurkauf W (2008) Biogenesis and germline functions of piRNAs. Development 135(1):3–9

    Article  PubMed  CAS  Google Scholar 

  29. Krishnamoorthy L, Bess JW Jr et al (2009) HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat Chem Biol 5(4):244–250

    Article  PubMed  CAS  Google Scholar 

  30. Lander ES, Linton LM et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  PubMed  CAS  Google Scholar 

  31. Li M, Yu D et al (2010) Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages. Arterioscler Thromb Vasc Biol 30(9):1818–1824

    Article  PubMed  CAS  Google Scholar 

  32. Lin C, Yang L et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083

    Article  PubMed  CAS  Google Scholar 

  33. Lohe AR, Moriyama EN et al (1995) Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 12(1):62–72

    Article  PubMed  CAS  Google Scholar 

  34. Millimaggi D, Mari M et al (2007) Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9(4):349–357

    Article  PubMed  CAS  Google Scholar 

  35. Muralidharan-Chari V, Clancy J et al (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885

    Article  PubMed  CAS  Google Scholar 

  36. Onafuwa-Nuga AA, King SR et al (2005) Nonrandom packaging of host RNAs in moloney murine leukemia virus. J Virol 79(21):13528–13537

    Article  PubMed  CAS  Google Scholar 

  37. Ostrowski M, Carmo NB et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30 sup pp 1–13

    Article  PubMed  CAS  Google Scholar 

  38. Pace JK 2nd, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17(4):422–432

    Article  PubMed  CAS  Google Scholar 

  39. Pereira V, Enard D et al (2009) The effect of transposable element insertions on gene expression evolution in rodents. PLoS One 4(2):e4321

    Article  PubMed  Google Scholar 

  40. Polavarapu N, Arora G et al (2011) Characterization and potential functional significance of human-chimpanzee large INDEL variation. Mob DNA 2:13

    Article  PubMed  CAS  Google Scholar 

  41. Serafino A, Balestrieri E et al (2009) The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp Cell Res 315(5):849–862

    Article  PubMed  CAS  Google Scholar 

  42. Sidhu SS, Mengistab AT et al (2004) The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene 23(4):956–963

    Article  PubMed  CAS  Google Scholar 

  43. Skog J, Wurdinger T et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  PubMed  CAS  Google Scholar 

  44. Taraboletti G, D’Ascenzo S et al (2006) Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 8(2):96–103

    Article  PubMed  CAS  Google Scholar 

  45. Taylor DD, Black PH (1986) Shedding of plasma membrane fragments. Neoplastic and developmental importance. Dev Biol (N Y 1985) 3:33–57

    CAS  Google Scholar 

  46. Taylor PM, Woodfield RJ et al (2002) Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 21(37):5765–5772

    Article  PubMed  CAS  Google Scholar 

  47. Trujillo JI (2011) MEK inhibitors: a patent review 2008–2010. Expert Opin Ther Pat 21(7):1045–1069

    Article  Google Scholar 

  48. Valadi H, Ekstrom K et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  PubMed  CAS  Google Scholar 

  49. van der Vos KE, Balaj L, Skog J, Breakefield XO. Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol. 2011 Aug;31(6):949–59.

    Google Scholar 

  50. Vogel G (2011) Retrotransposons. Do jumping genes spawn diversity? Science 332(6027):300–301

    CAS  Google Scholar 

  51. Waterhouse M, Themeli M et al (2011) Horizontal DNA transfer from donor to host cells as an alternative mechanism of epithelial chimerism after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 17(3):319–329

    Article  PubMed  CAS  Google Scholar 

  52. Wennerberg K, Rossman KL et al (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846

    Article  PubMed  CAS  Google Scholar 

  53. Whitfield JR, Soucek L (2011) Tumor microenvironment: becoming sick of Myc. Cell Mol Life Sci 69(6):931–934

    Article  PubMed  Google Scholar 

  54. Wieckowski E, Whiteside TL (2006) Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 36(1–3):247–254

    Article  PubMed  CAS  Google Scholar 

  55. Wissing S, Munoz-Lopez M et al (2011) Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum Mol Genet 21:208–218

    Article  PubMed  CAS  Google Scholar 

  56. Yu JL, May L et al (2005) Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105(4):1734–1741

    Article  PubMed  CAS  Google Scholar 

  57. Yu X, Harris SL et al (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66(9):4795–4801

    Article  PubMed  CAS  Google Scholar 

  58. Zhang L, Hou D et al (2011) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, HG., Skog, J. (2013). The Role of Tumor Exosomes in Tumorigenicity. In: Zhang, HG. (eds) Emerging Concepts of Tumor Exosome–Mediated Cell-Cell Communication. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3697-3_8

Download citation

Publish with us

Policies and ethics