Skip to main content

Animal Model Imaging Techniques

  • Chapter
  • First Online:
Experimental and Clinical Metastasis
  • 754 Accesses

Abstract

In recent years, the advent of new imaging technologies has enabled researchers to portray the development of metastases in animal models in a new light. Previously, observing the behaviour of metastatic cells required the sacrifice of the animal and thus the progress of development or treatment is often incomplete and necessarily elucidated from sequential sacrifices of inbred animals. Considering the technical difficulties in visualizing individual metastatic cells by traditional immunohistochemical or staining methods, understanding the critical first steps of micrometastatic development was difficult and often impractical. New technologies, in particular the ability to force cells of interest to fluoresce amongst a dull background, have enabled researchers to visualize the behaviour of individual metastatic cells in host organisms. These methods, in conjunction with new, non-lethal intravital imaging methods, have contributed greatly to the body of knowledge regarding malignant cells and the development of metastases. This chapter will discuss several of the more popular imaging methods such as luciferase, green fluorescent protein, MRI, CT, PET, and will analyze the advantages and limitations of each method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bouvet M et al (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res 62:1534–1540

    PubMed  CAS  Google Scholar 

  • Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Chambers AF et al (1995) Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 14:279–301

    Article  PubMed  CAS  Google Scholar 

  • 24th Congress of the International Association for Breast Cancer Research (2003) Advances in human breast cancer research: preclinical models. Sacramento, USA. 1–5 Nov 2003. Abstracts. Breast Cancer Res 5(Suppl 1):S1–18

    Article  Google Scholar 

  • Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52

    Article  PubMed  CAS  Google Scholar 

  • de Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci U S A 82:7870–7873

    Article  PubMed  CAS  Google Scholar 

  • Deroose CM et al (2007) Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J Nucl Med 48:295–303

    PubMed  CAS  Google Scholar 

  • El Hilali N, Rubio N, Martinez-Villacampa M, Blanco J (2002) Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest 82:1563–71

    Google Scholar 

  • Gates BJ, DeLuca M (1975) The production of oxyluciferin during the firefly luciferase light reaction. Arch Biochem Biophys 169:616–621

    Article  PubMed  CAS  Google Scholar 

  • Greer LF 3rd, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    Article  PubMed  CAS  Google Scholar 

  • Haddock S, Moline M (2010) Case J Bioluminescence in the Sea. Annu Rev Marine Sci 2:443–493

    Article  Google Scholar 

  • Harman G (1980) Fundamentals of computerized tomography. Academic, New York

    Google Scholar 

  • Heyn C et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56:1001–1010

    Article  PubMed  Google Scholar 

  • Hoffman RM (2002a) In vivo imaging of metastatic cancer with fluorescent proteins. Cell Death Differ 9:786–789

    Article  CAS  Google Scholar 

  • Hoffman RM (2002b) Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol 3:546–556

    Article  CAS  Google Scholar 

  • Hooper CE, Ansorge RE, Browne HM, Tomkins P (1990) CCD imaging of luciferase gene expression in single mammalian cells. J Biolumin Chemilumin 5:123–130

    Article  PubMed  CAS  Google Scholar 

  • Lauterbur PC (1989) Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973. Clin Orthop Relat Res 224:3–6

    Google Scholar 

  • Naumov GN et al (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112 (Pt 12):1835–1842

    PubMed  CAS  Google Scholar 

  • Naumov GN et al (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82:199–206

    Article  PubMed  CAS  Google Scholar 

  • Novelline R (2004) Squire’s Fundamentals of Radiology, 6th edn. Harvard University Press, Cambridge

    Google Scholar 

  • Simoes RV et al (2008) Preliminary characterization of an experimental breast cancer cells brain metastasis mouse model by MRI/MRS. Magma 21:237–249

    Article  PubMed  CAS  Google Scholar 

  • Smakman N, Martens A, Kranenburg O, Borel Rinkes IH (2004) Validation of bioluminescence imaging of colorectal liver metastases in the mouse. J Surg Res 122:225–230

    Article  PubMed  CAS  Google Scholar 

  • Strube A et al (2010) Characterization of a new renal cell carcinoma bone metastasis mouse model. Clin Exp Metastasis 27:319–330

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  • Wetterwald A et al (2002) Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160:1143–1153

    Article  PubMed  Google Scholar 

  • Yamamoto N et al (2003) Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. Cancer Res 63:7785–7790

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Logan M.Sc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Logan, P.T. (2013). Animal Model Imaging Techniques. In: Burnier, J., Burnier, Jr., M. (eds) Experimental and Clinical Metastasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3685-0_18

Download citation

Publish with us

Policies and ethics