Skip to main content

To Synthesize Liquid Fuels on Precipitated Fe Catalyst with CO2-Containing Syngas Gasified from Biomass

  • Chapter
  • First Online:
Advanced Biofuels and Bioproducts

Abstract

Fischer–Tropsch (FT) synthesis is an effective method to produce liquid fuels from biomass. This chapter reports the study on precipitated Fe catalysts for conversion of CO2-containing syngas to liquid fuels. The influences of promoter Zn, K, and Cu on CO2 activation were analyzed by CO2 temperature-programmed- desorption (CO2-TPD). Cu has no strong effect to activate CO2. K increases mainly CO2 adsorption and is inferior to Zn in producing CO. The catalysts with high Zn/K ratio or low K content possess desorbed CO peak around 930 K in CO2-TPD and decreased CO2 selectivity resulted from CO2 addition in FT synthesis. The Fe catalyst with high Zn/K ratio shows high C2+ hydrocarbon selectivity for CO2 hydrogenation, too. It indicates that the CO2 contained in syngas is able to be activated by suitable promoter(s) for hydrocarbon synthesis at low temperature. The correlation between promoter composition and catalyst reactivity found for SiO2-free Fe catalysts is effective for SiO2-added Fe catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.eia.doe.gov/kids/history/timelines/index.html

  2. Dry ME (1999) Fischer-Tropsch reactions and the environment. Appl Catal A 189:185–190

    Article  CAS  Google Scholar 

  3. Schobert HH, Song C (2002) Chemicals and materials from coal in the 21st century. Fuel 81:15–32

    Article  CAS  Google Scholar 

  4. http://hypertextbook.com/facts/index-topics.shtml

  5. Piel WJ (2001) Transportation fuels of the future? Fuel Proc Tech 71:167–179

    Article  CAS  Google Scholar 

  6. Chum HL, Overend RP (2001) Biomass and renewable fuels. Fuel Proc Technol 71:187–195

    Article  CAS  Google Scholar 

  7. Heinemann H (1981) A brief history of industrial catalysis. In: Anderson JR, Boudart M (eds) Catalysis, science and technology, vol 1. Springer, New York

    Google Scholar 

  8. Schulz H (1999) Short history and present trends of Fischer-Tropsch synthesis. Appl Catal A 186:3–12

    Article  CAS  Google Scholar 

  9. Jun KW, Roh HS, Kim KS et al (2004) Catalytic investigation for Fischer-Tropsch synthesis from bio-mass derived syngas. Appl Catal A 259:221–226

    Article  CAS  Google Scholar 

  10. Kahandawala MSP, Graham JL, Sidhu SS (2004) Particulate emission from combustion of diesel and Fischer-Tropsch fuels: a shock tube study. Energy Fuel 18:289–295

    Article  CAS  Google Scholar 

  11. Dry ME (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71:227–241

    Article  CAS  Google Scholar 

  12. Vosloo AC (2001) Fischer-Tropsch: a futuristic view. Fuel Proc Technol 71:149–155

    Article  CAS  Google Scholar 

  13. Berg FR, Crajé MWJ, Kraan AM et al (2003) Reduction behaviour of Fe/ZrO2 and Fe/K/ZrO2 Fischer-Tropsch catalysts. Appl Catal A 242:403–416

    Article  Google Scholar 

  14. Asadullah M, Miyazawa T, Ito S et al (2004) Gasification of different biomass in a dual-bed gasifier system combined with novel catalysts with high energy efficiency. Appl Catal A 267:95–102

    Article  CAS  Google Scholar 

  15. Dry ME (1981) The Fischer-Tropsch synthesis. In: Anderson JR, Boudart M (eds) Catalysis, science and technology, vol 1. Springer, New York

    Google Scholar 

  16. Riedel T, Claeys M, Schulz H et al (1999) Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Appl Catal A 186:201–213

    Article  CAS  Google Scholar 

  17. Zhang Y, Jacobs G, Sparks DE et al (2002) CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts. Catal Today 71:411–418

    Article  CAS  Google Scholar 

  18. Ando H, Xu Q, Fujiwara M et al (1998) Hydrocarbon synthesis from CO2 over Fe-Cu catalysts. Catal Today 45:229–234

    Article  CAS  Google Scholar 

  19. Schulz H, Schaub G, Claeys M et al (1999) Transient initial kinetic regimes of Fischer-Tropsch synthesis. Appl Catal A 186:215–227

    Article  CAS  Google Scholar 

  20. Schulz H, Steen E, Claeys M (1995) Specific inhibition as the kinetic principle of the Fischer-Tropsch synthesis. Topic Catal 2:223–234

    Article  CAS  Google Scholar 

  21. Raje AP, Davis BH (1997) Fischer-Tropsch synthesis over iron-based catalysts in a slurry reactor. Reaction rates, selectivities and implications for improving hydrocarbon productivity. Catal Today 36:335–345

    Article  CAS  Google Scholar 

  22. Nozaki F, Sodesawa T, Sathoh S et al (1987) Hydrogenation of carbon dioxide into light hydrocarbons at atmospheric pressure over Rh/Nb2O5 or Cu/SiO2-Rh/Nb2O5 catalyst. J Catal 104:339–346

    Article  CAS  Google Scholar 

  23. Thampi KR, Kiwi J, Gratzel M (1987) Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508

    Article  CAS  Google Scholar 

  24. Barrault J, Alouche A (1990) Isotopic exchange measurements of the rate of interconversion of carbon-monoxide and carbon-dioxide over nickel supported on rare-earth-oxides. Appl Catal 58:255–267

    Article  CAS  Google Scholar 

  25. Schild C, Wokaun A, Koeppel RA et al (1991) CO2 hydrogenation over nickel/zirconia catalysts from amorphous precursors: on the mechanism of methane formation. J Phys Chem 95:6341–6346

    Article  CAS  Google Scholar 

  26. Williams KJ, Boffa AB, Salmeron M et al (1991) The kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers. Catal Lett 9:415–426

    Article  CAS  Google Scholar 

  27. Fujimoto K, Yokota K (1991) Effective hydrogenation of carbon-dioxide with 2-stage reaction system. Chem Lett 20:559–562

    Google Scholar 

  28. Pijolat M, Perrichon V, Primet M et al (1982) Hydrocondensation of carbon dioxide over an iron-alumina catalyst: a three-step model. J Mol Catal 17:367–380

    Article  CAS  Google Scholar 

  29. Choi PH, Jun KW, Lee SJ et al (1996) Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts. Catal Lett 40:115–118

    Article  CAS  Google Scholar 

  30. Yan SR, Jun KW, Hong JS et al (2000) Promotion effect of Fe-Cu catalyst for the hydrogenation of CO2 and application to slurry reactor. Appl Catal A 194–195:63–70

    Google Scholar 

  31. Dry ME, Shingles T, Boshoff LJ et al (1969) Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis. J Catal 15:190–199

    Article  CAS  Google Scholar 

  32. Lee MD, Lee JF, Chang CS (1989) Hydrogenation of carbon-dioxide on unpromoted and potassium-promoted iron catalysts. Bull Chem Soc Jpn 62:2756–2758

    Article  CAS  Google Scholar 

  33. Suo ZH, Kou Y, Niu JZ et al (1997) Characterization of TiO2-, ZrO2- and Al2O3-supported iron catalysts as used for CO2 hydrogenation. Appl Catal A 148:301–313

    Article  CAS  Google Scholar 

  34. Krishnamoorthy S, Li A, Iglesia E (2002) Pathways for CO2 formation and conversion during Fischer-Tropsch synthesis on iron-based catalysts. Catal Lett 80:77–86

    Article  CAS  Google Scholar 

  35. Hall WK, Kokes RJ, Emmett PJ (1957) Mechanism studies of the Fischer-Tropsch synthesis. The addition of radioactive methanol, carbon dioxide and gaseous formaldehyde. J Am Chem Soc 79:2983–2989

    Article  CAS  Google Scholar 

  36. Xu L, Bao S, Houpt DJ et al (1997) Role of CO2 in the initiation of chain growth and alcohol formation during the Fischer-Tropsch synthesis. Catal Today 36:347–355

    Article  CAS  Google Scholar 

  37. Rostrup-Nielsen JR (2002) Syngas in perspective. Catal Today 71:243–247

    Article  CAS  Google Scholar 

  38. Soled SL, Iglesia E, Miseo S et al (1995) Selective synthesis of α-olefins on Fe-Zn Fischer-Tropsch catalysts. Topic Catal 2:193–205

    Article  CAS  Google Scholar 

  39. Smith JM, Ness HC (1975) Introduction to chemical engineering thermodynamics, 3rd edn. McGraw Hill, Tokyo

    Google Scholar 

  40. Ning W, Koizumi N, Chang H et al (2006) Phase transformation of unpromoted and promoted Fe catalysts and the formation of carbonaceous compounds during Fischer-Tropsch synthesis reaction. Appl Catal A 312:35–44

    Article  CAS  Google Scholar 

  41. Ning W, Koizumi N, Yamada M (2007) Improvement of promoters on the Fischer-Tropsch activity of mechanically mixed Fe catalysts. Catal Commu 8:275–278

    Article  CAS  Google Scholar 

  42. Ning W, Koizumi N, Yamada M (2009) Researching Fe catalyst suitable for CO2-containing syngas for Fischer-Tropsch synthesis. Energy Fuel 23:4696–4700

    Article  CAS  Google Scholar 

  43. Ning W, Chang H, Koizumi N et al (2006) Effects of K, Cu and Zn addition on the Fischer-Tropsch synthesis activity of the precipitated Fe catalyst in the absence and presence of CO2 at low temperature. The 9th China-Japan Symposium on Coal and C1 Chemistry, Chengdu, China, October, pp 22–28

    Google Scholar 

  44. Ning W, Yang X, Lv D et al (2009) Consideration and practice to develop Fe catalysts for Fischer-Tropsch synthesis from coal-derived syngas. 13th Asian Chemical Congress, Shanghai, China, September, pp 13–16

    Google Scholar 

  45. Ning W, Wang X, Lin Q et al (2010) Study to control reactive performance of precipitated iron-based catalysts for Fischer-Tropsch synthesis. Chem Ind Eng Prog 29(suppl):378–379

    Google Scholar 

  46. Li S, Meitzner GD, Iglesia E (2001) Structure and site evolution of iron oxide catalyst precursors during the Fischer-Tropsch synthesis. J Phys Chem B 105:5743–5750

    Article  CAS  Google Scholar 

  47. Bian G, Oonuki A, Koizumi N et al (2002) Studies with a precipitated iron Fischer-Tropsch catalyst reduced by H2 or CO. J Mol Catal A 186:203–213

    Article  CAS  Google Scholar 

  48. Jiang M, Koizumi N, Yamada M (2000) Adsorption properties of iron and iron-manganese catalysts investigated by in-situ diffuse reflectance FTIR spectroscopy. J Phys Chem B 104:7636–7643

    Article  CAS  Google Scholar 

  49. Xu L, Wang Q, Liang D et al (1998) The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation. Appl Catal A 173:19–25

    Article  CAS  Google Scholar 

  50. Nam SS, Lee SJ, Kim H et al (1997) Catalytic conversion of carbon dioxide into hydrocarbons over zinc promoted iron catalysts. Energy Convers Manage 38:S397–S402

    Article  CAS  Google Scholar 

  51. Bukur DB, Okabe K, Rosynek MP et al (1995) Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis I. Characterization studies. J Catal 155:353–365

    Article  CAS  Google Scholar 

  52. Shroff MD, Kalakkad DS, Coulter KE et al (1995) Activation of precipitated iron Fischer-Tropsch synthesis catalysts. J Catal 156:185–207

    Article  CAS  Google Scholar 

  53. Sudsakorn K, Goodwin JG, Adeyiga AA (2003) Effect of activation method on Fe FTS catalysts: investigation at the site level using SSITKA. J Catal 213:204–210

    Article  CAS  Google Scholar 

  54. Ning W (2005) Ph.D. Thesis. Tohoku University, Sendai, Japan

    Google Scholar 

  55. Jiang M, Koizumi N, Yamada M (2000) Characterization of potassium-promoted iron-manganese catalysts by in situ diffuse reflectance FTIR using NO, CO, and CO + H2 as probes. Appl Catal A 204:49–58

    Article  CAS  Google Scholar 

  56. Ando H, Matsumura Y, Souma Y (2000) A comparative study on hydrogenation of carbon dioxide and carbon monoxide over iron catalyst. J Mol Catal A 154:23–29

    Article  CAS  Google Scholar 

  57. Dlamini H, Motjope T, Joorst G et al (2002) Changes in physico-chemical properties of iron-based Fischer-Tropsch catalyst induced by SiO2 addition. Catal Lett 78:201–207

    Article  CAS  Google Scholar 

  58. Yang Y, Xiang H-W, Tian L et al (2005) Structure and Fischer-Tropsch performance of iron-manganese catalyst incorporated with SiO2. Appl Catal A 284:105–122

    Article  CAS  Google Scholar 

  59. O’Brien RJ, Xu L, Spicer RL et al (1996) Activation study of precipitated iron Fischer-Tropsch catalysts. Energy Fuel 10:921–926

    Article  Google Scholar 

  60. Anderson RB, Seligman B, Schultz JF et al (1952) Fischer-Tropsch synthesis. Some important variables of the synthesis on iron catalysts. Ind Eng Chem 44:391–397

    Article  CAS  Google Scholar 

  61. Arakawa H, Bell AT (1983) Effects of potassium promotion on the activity and selectivity of iron Fischer-Tropsch catalysts. Ind Eng Chem Proc Des Dev 22:97–103

    Article  CAS  Google Scholar 

  62. Bukur DB, Mukesh D, Patel SA (1990) Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis. Ind Eng Chem Res 29:194–204

    Article  CAS  Google Scholar 

  63. Bukur DB, Lang X, Mukesh D et al (1990) Binder/support effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis. Ind Eng Chem Res 29:1588–1599

    Article  CAS  Google Scholar 

  64. Dictor RA, Bell AT (1986) Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. J Catal 97:121–136

    Article  CAS  Google Scholar 

  65. Raje A, Inga JR, Davis BH (1997) Fischer-Tropsch synthesis: process considerations based on performance of iron-based catalysts. Fuel 76:273–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Science and Technology Department of Zhejiang Province (2009C21002), Zhejiang Provincial Natural Science Foundation of China (Y4100410) and National Ministry of Science and Technology of China (2009AA05Z435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Ning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ning, W., Yamada, M. (2013). To Synthesize Liquid Fuels on Precipitated Fe Catalyst with CO2-Containing Syngas Gasified from Biomass. In: Lee, J. (eds) Advanced Biofuels and Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_14

Download citation

Publish with us

Policies and ethics