Skip to main content
Log in

The kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Submonolayer deposits of titania on a Rh foil have been found to increase the rate of CO2 hydrogenation. The primary product, methane, exhibits a maximum rate at a TiO x coverage of 0.5 ML which is a factor of 15 higher than that over the clean Rh surface. The rate of ethane formation displays a maximum which is 70 times that over the unpromoted Rh foil; however, the selectivity for methane remains in excess of 99%. The apparent activation energy for methane formation and the dependence of the rate on H2 and CO2 partial pressure have been determined both for the bare Rh surface and the titania-promoted surface. These rate parameters show very small variations as titania is added to the Rh catalyst. The methanation of CO2 is proposed to start with the dissociation of CO2 into CO(a) and O(a), and then proceed through steps which are identical to those for the hydrogenation of CO. The increase in the rate of CO2 hydrogenation in the presence of titania is attributed to an interaction between the adsorbed CO, released by CO2 dissociation, and Ti3+ ions located at the edge of TiO x islands covering the surface. Differences in the effects of titania promotion on the methanation of CO2 and CO are discussed in terms of the mechanisms that have been proposed for these two reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Tauster, Acc. Chem. Res. 20 (1987) 389.

    Google Scholar 

  2. A.T. Bell, Supports and metal-support interaction in catalyst design, in:Catalyst Design - Progress and Perspectives, ed. L.L. Hegedus (Wiley, New York, 1987).

    Google Scholar 

  3. G.L. Haller and D.E. Resasco, Adv. Catal. 36 (1989) 173.

    Google Scholar 

  4. F. Solymosi, A. Erdöhelyi and T. Bansagi, J. Catal. 68 (1981) 371.

    Google Scholar 

  5. M.A. Henderson and S.D. Worley, J. Phys. Chem. 89 (1985) 1417.

    Google Scholar 

  6. T. Iizuka, Y. Tanaka and K. Tanabe, J. Molec. Catal. 17 (1982) 381.

    Google Scholar 

  7. F. Nozaki, T. Sodesawa, S. Satoh and K. Kimura, J. Catal. 104 (1987) 339.

    Google Scholar 

  8. Y.-W. Chung, G. Xiong and C.C. Kao, J. Catal. 85 (1984) 237.

    Google Scholar 

  9. R.A. Demmin, C.S. Ko and R.J. Gorte, J. Phys. Chem. 89 (1985) 1151.

    Google Scholar 

  10. R.A. Demmin and R.J. Gorte, J. Catal. 98 (1986) 577.

    Google Scholar 

  11. M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, J. Catal. 106 (1987) 401.

    Google Scholar 

  12. M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, J. Chem. Soc., Faraday Trans, 1, 83 (1987) 2061.

    Google Scholar 

  13. R.A. Demmin and R.J. Gorte, J. Catal. 105 (1987) 373.

    Google Scholar 

  14. F. Solymosi and A. Erdöhelyi, J. Molec. Catal. 8 (1980) 471.

    Google Scholar 

  15. B.A. Sexton and G.A. Somorjai, J. Catal. 46 (1977) 167.

    Google Scholar 

  16. M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, Surf. Sci. 169 (1986) 123.

    Google Scholar 

  17. K.J. Williams, M. Salmeron, A.T. Bell and G.A. Somorjai, Surf. Sci. 204 (1988) L745.

    Google Scholar 

  18. W.M.H. Sachtler and M. Ichikawa, J. Phys. Chem. 90 (1986) 4752.

    Google Scholar 

  19. T. Mori, H. Masuda, H. Imai, A. Miyamoto, R. Hasebe and Y. Murakami, J. Phys. Chem. 87 (1983) 3648.

    Google Scholar 

  20. T. Mori, A. Miyamoto, H. Niizuma, N. Takahashi, T. Hattori and Y. Murakami, J. Phys. Chem. 90 (1986) 109.

    Google Scholar 

  21. Y. Mori, T. Mori, A. Miyamoto, N. Takahashi, T. Hattori and Y. Murakami, J. Phys. Chem. 93 (1989) 2039.

    Google Scholar 

  22. J.S. Rieck and A.T. Bell, J. Catal. 96 (1985) 88.

    Google Scholar 

  23. E. Shustorovich and A.T. Bell, J. Catal. 113 (1988) 341.

    Google Scholar 

  24. K.J. Williams, Ph.D. Thesis, Department of Chemical Engineering, University of California, Berkeley, 1991.

    Google Scholar 

  25. D.G. Castner, B.A. Sexton and G.A. Somorjai, Surf. Sci. 71 (1978) 519.

    Google Scholar 

  26. D.W. McKee, J. Catal. 8 (1967) 240.

    Google Scholar 

  27. B.E. Koel, D.E. Peebles and J.M. White, Surf. Sci. 107 (1981) L367.

    Google Scholar 

  28. B.E. Koel, D.E. Peebles and J.M. White, Surf. Sci. 125 (1983) 709.

    Google Scholar 

  29. J.T. Yates Jr., P.A. Thiel and W.H. Weinberg, Surf. Sci. 84 (1979) 427.

    Google Scholar 

  30. A. Amariglio, A. Elbiache and H. Amariglio, J. Catal. 98 (1986) 355.

    Google Scholar 

  31. T.W. Root, L.D. Schmidt and G.B. Fisher, Surf. Sci. 134 (1983) 30.

    Google Scholar 

  32. M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, Surf. Sci. 195 (1988) 429.

    Google Scholar 

  33. H.C. Wang, D.F. Ogletree and M.B. Salmeron, J. Vac. Sci. Tech. A, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, K.J., Boffa, A.B., Salmeron, M. et al. The kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers. Catal Lett 9, 415–426 (1991). https://doi.org/10.1007/BF00764834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00764834

Keywords

Navigation