Skip to main content

Tribology of Metals and Alloys

  • Chapter
  • First Online:
Tribology for Scientists and Engineers
  • 6307 Accesses

Abstract

The surface properties of metals and alloys become important when these materials are used especially for tribological applications. Some basic concepts involved during wear of metals and alloys are briefly discussed in this chapter. Delamination theory of adhesive wear which is dominating wear mechanism for most metals and alloys is discussed. Most of the tribological joints are exposed to environmental oxygen when used in atmospheric conditions. Oxidation becomes problematic for such and high-temperature sliding applications when oxygen source is readily available at the interface. The debris formation mechanism and oxidation during sliding are included in this chapter. Information on oxidation and tribological behavior of 60NiTi is reviewed as it is a potential alloy for tribo-element applications. A brief description on phase transformation and high-temperature tribology of metallic materials is also included. The wear of materials at the interface depends on the interfacial strength of the sliding materials. In high-temperature oxidative wear, wear performance can be determined by the type of oxides formed on the sliding surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. In The American Heritage® Dictionary of the English Language, Houghton Mifflin Company

    Google Scholar 

  2. In Merriam-Webster Medical Dictionary© 2002, Merriam-Webster, Inc

    Google Scholar 

  3. In WordNet® 2.0 © 2003, Princeton University

    Google Scholar 

  4. Binnig G et al (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61

    Article  Google Scholar 

  5. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  Google Scholar 

  6. Israelachvili JN (1989) Techniques for direct measurements of forces between surfaces in liquids at the atomic scale. Chemtracts Anal Phys Chem 1:1–12

    Google Scholar 

  7. Krim J, Widom A (1988) Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity. Phys Rev B 38(17):12184–12189

    Article  Google Scholar 

  8. Krim J, Solina DH, Chiarello R (1991) Nanotribology of a Kr monolayer: a quartz-crystal microbalance study of atomic-scale friction. Phys Rev Lett 66(2):181–184

    Article  Google Scholar 

  9. Rabinowicz E (1995) Friction and lubrication of materials. Wiley, New York

    Google Scholar 

  10. Bowden FP, Tabor D (1964) The friction and lubrication of solids, vol I and II. Clarendon Press, Oxford

    Google Scholar 

  11. Suh NP (1973) The delamination theory of wear. Wear 25(1):111–124

    Article  Google Scholar 

  12. Suh NP (1986) Tribophysics. Printice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  13. Holm R (1946) Electric contacts. Almquist and Wiksells, Stockholm

    Google Scholar 

  14. Archard J (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988

    Article  Google Scholar 

  15. Stott FH (1998) The role of oxidation in the wear of alloys. Tribol Int 31(1–3):61–71

    Article  Google Scholar 

  16. Fehlner FP (1986) Low temperature oxidation, the role of vitreous oxides. OSTI ID: 5328041. Retrieved from http://www.osti.gov/scitech/servlets/purl/5328041

  17. Jeurgens L et al (2000) Thermodynamic stability of amorphous oxide films on metals: application to aluminum oxide films on aluminum substrates. Phys Rev B 62(7):4707

    Article  Google Scholar 

  18. Doherty P, Davis R (1963) Direct observation of the oxidation of Aluminum single crystal surfaces. J Appl Phys 34(3):619–628

    Article  Google Scholar 

  19. Eldridge J et al (1988) Thermal oxidation of single-crystal aluminum at 550 °C. Oxidation Metals 30(5):301–328

    Article  Google Scholar 

  20. Snijders P, Jeurgens L, Sloof W (2002) Structure of thin aluminium-oxide films determined from valence band spectra measured using XPS. Surf Sci 496(1):97–109

    Article  Google Scholar 

  21. Francis E (1999) Standard oxidation potentials. ©1998 [cited 2012 Oct 30, 2012]; Accessed http://dl.clackamas.cc.or.us/ch105-09/standard.htm

  22. Ingole SP (2005) Nanotribological characterization of dynamic surfaces. University of Alaska Fairbanks, Fairbanks, AK, USA

    Google Scholar 

  23. Ingole S (2013) 60NiTi alloy for tribological and biomedical surface engineering applications. JOM 65(6):792–798. doi:10.1007/s11837-013-0610-7

    Article  Google Scholar 

  24. Industry updates (2011) J Fail Anal Prev 11(6):645–653. doi:10.1007/s11668-011-9515-3

    Google Scholar 

  25. Chan CM, Trigwell S, Duerig T (2004) Oxidation of an NiTi alloy. Surf Interface Anal 15(6):349–354

    Article  Google Scholar 

  26. Firstov G et al (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23(24):4863–4871

    Article  Google Scholar 

  27. DellaCorte C et al (2009) Intermetallic Nickel–Titanium alloys for oil-lubricated bearing applications. NASA, Cleveland, OH

    Google Scholar 

  28. DellaCorte C, Glennon GN (2012) Ball bearings comprising nickel-titanium and methods of manufacture thereof, in Google Patents, The United States of America as represented by the National Aeronautics and Space Administration, Abbott Ball Company, USA

    Google Scholar 

  29. DellaCorte C et al (2011) Resilient and corrosion-proof rolling element bearings made from superelastic Ni-Ti alloys for aerospace mechanism applications. August 2011, NASA/TM—2011-217105, http://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110016524_2011017534.pdf

  30. Pepper SV et al (2009) NITINOL 60 as a material for spacecraft triboelements. 2009. Proc. ‘13th European Space Mechanisms and Tribology Symposium – ESMATS 2009’, Vienna, Austria, 23–25 September 2009 (ESA SP-670, July 2009), http://www.esmats.eu/esmatspapers/pastpapers/pdfs/2009/pepper.pdf

  31. Pepper SV, DellaCorte C, Glennon G (2010) Lubrication of Nitinol 60, June 2010, NASA/TM-2010: 215331-1-8, http://www.grc.nasa.gov/WWW/StructuresMaterials/TribMech/highlights/documents/additional/TM-2010-216331.pdf

  32. Ingole S, Liang H, Mohanty P (2005) Tribology characteristics of thermal sprayed NiTi coatings. In presented at 4th ASM international surface engineering congress and 19th international conference on surface modification technologies. ASM International, Saint Paul

    Google Scholar 

  33. Stanford MK, Thomas F, DellaCorte C (2012) Processing issues for preliminary melts of the intermetallic compound 60-NITINOL. Nov 01, 2012, NASA/TM-2012-216044; E-18479; GRC-E-DAA-TN4035, Doc ID: 20130000580, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130000580_2012018813.pdf

  34. Jaeger J (1942) Moving sources of heat and the temperature of sliding contacts. in. J Proc Roy Soc NSW 76:203–224

    Google Scholar 

  35. Cook N, Bhushan B (1973) Sliding surface interface temperatures(solid–solid interface temperature rise during sliding from model with surface topography statistics, frictional conditions, surface hardness and thermal parameters). ASME Trans Ser F J Lubr Technol 95:59–64

    Article  Google Scholar 

  36. Rigney D et al (1986) Low energy dislocation structures caused by sliding and by particle impact. Mater Sci Eng 81:409–425

    Article  Google Scholar 

  37. Don J, Sun TC, Rigney DA (1983) Friction and wear of Cu–Be and dispersion-hardened copper systems. Wear 91(2):191–199

    Article  Google Scholar 

  38. Hume-Rothery W (1931) The metallic state. Oxford University Press, London

    Google Scholar 

  39. Davies H, Luborsky F (1983) Amorphous metallic alloys. Butterworths, London, pp 8–25

    Book  Google Scholar 

  40. Giessen BC (1982) In: Proceedings of 4th international conference on rapidly quenched metals, Japan Institute of Metals, Sendai

    Google Scholar 

  41. Xia S et al (1999) Formation of disordered structures in Cr–Fe alloy by mechanical milling. J Phys Condens Matter 5(17):2729

    Article  Google Scholar 

  42. Gaffet E et al (1988) Ball milling amorphization mechanism of Ni⋅Zr alloys. J Less Common Metals 145:251–260

    Article  Google Scholar 

  43. Hellstern E, Schultz L (1988) Formation and properties of mechanically alloyed amorphous Fe⋅Zr. Mater Sci Eng 97:39–42

    Article  Google Scholar 

  44. Koch C et al (1983) Preparation of “amorphous” Ni 6 0 Nb 4 0 by mechanical alloying. Appl Phys Lett 43(11):1017–1019

    Article  Google Scholar 

  45. Thompson J, Politis C (1987) Formation of amorphous Ti–Pd alloys by mechanical alloying methods. EPL (Europhys Lett) 3(2):199

    Article  Google Scholar 

  46. Dolgin B et al (1986) Mechanical alloying of Ni, CO, and Fe with Ti. Formation of an amorphous phase. J Non-Crystalline Solids 87(3):281–289

    Article  Google Scholar 

  47. Politis C, Johnson W (1986) Preparation of amorphous Ti 1−x Cu x (0.10≪x ≤ 0.87) by mechanical alloying. J Appl Phys 60(3):1147–1151

    Article  Google Scholar 

  48. Schwarz RB, Koch CC (1986) Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics. Appl Phys Lett 49(3):146–148

    Article  Google Scholar 

  49. Atzmon M et al (1984) Formation and growth of amorphous phases by solid-state reaction in elemental composites prepared by cold working. Appl Phys Lett 45(10):1052–1053

    Article  Google Scholar 

  50. Schwarz R, Johnson W (1983) Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys Rev Lett 51(5):415–418

    Article  Google Scholar 

  51. Johnson WL (1986) Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog Mater Sci 30(2):81–134

    Article  Google Scholar 

  52. Ahlström J, Karlsson B (2002) Modelling of heat conduction and phase transformations during sliding of railway wheels. Wear 253(1–2):291–300

    Article  Google Scholar 

  53. Beilby SG (1921) Aggregation and flow of solids. Macmillon, London

    Google Scholar 

  54. Bowden F, Hughes T (1937) Physical properties of surfaces. IV. Polishing, surface flow and the formation of the Beilby layer. Proc Roy Soc Lon Ser A Math Phys Sci 160(903):575–587

    Article  Google Scholar 

  55. Rigney D, Hammerberg J (1999) Mechanical mixing and the development of nanocrystalline material during the sliding of metals. Proc TMS Fall Meet 465–474

    Google Scholar 

  56. Ganapathi S et al (1990) A comparative study of the nanocrystalline material produced by sliding wear and inert gas condensation. In MRS proceedings. Cambridge University Press, Cambridge

    Google Scholar 

  57. Rigney D et al (2003) Examples of structural evolution during sliding and shear of ductile materials. Scripta Materialia 49(10):977–983

    Article  Google Scholar 

  58. Kim HJ, Karthikeyan S, Rigney D (2009) A simulation study of the mixing, atomic flow and velocity profiles of crystalline materials during sliding. Wear 267(5–8):1130–1136

    Article  Google Scholar 

  59. Fu XY, Rigney D, Falk M (2003) Sliding and deformation of metallic glass: experiments and MD simulations. J Non-Crystalline Solids 317(1):206–214

    Article  Google Scholar 

  60. Heilmann P et al (1983) Sliding wear and transfer. Wear 91(2):171–190

    Article  Google Scholar 

  61. Weast R, Selby S, Hodgman C (1965/1966) Handbook of chemistry and physics, 46th edn. The Chemical Rubber Co, Cleveland, OH

    Google Scholar 

  62. Xia SK, Saitovitch EB (1994) Formation of an amorphous phase in Cr(1−x)FeX films obtained by thermal evaporation. Phys Rev B 49(5):927

    Article  Google Scholar 

  63. Birol Y (2010) High temperature sliding wear behaviour of Inconel 617 and Stellite 6 alloys. Wear 269(9–10):664–671

    Article  Google Scholar 

  64. Blau PJ (2010) Elevated-temperature tribology of metallic materials. Tribol Int 43(7):1203–1208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeep P. Ingole Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingole, S.P. (2013). Tribology of Metals and Alloys. In: Menezes, P., Nosonovsky, M., Ingole, S., Kailas, S., Lovell, M. (eds) Tribology for Scientists and Engineers. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1945-7_6

Download citation

Publish with us

Policies and ethics