Skip to main content

Advertisement

Log in

60NiTi Alloy for Tribological and Biomedical Surface Engineering Applications

  • Published:
JOM Aims and scope Submit manuscript

60NiTi is an alloy with 60 wt% of nickel (Ni) and 40 wt% of titanium (Ti). This alloy was developed in the 1950s at the Naval Ordnance Laboratory (NOL) along with 55NiTi (55 wt% of Ni and 45 wt% of Ti). Both of these alloys exhibit the shape memory effect to different extents. The unique properties of 60NiTi, which are suitable for surface engineering (tribological) applications, are enumerated here. With appropriate heat treatment, this alloy can achieve high hardness (between Rc 55 and Rc 63). It has very good corrosion resistance and is resilient. Machinable before its final heat treatment, this alloy can be ground to fine surface finish and to tight dimensions. At one time, due to the popularity and wider applications of 55NiTi, the study of 60NiTi suffered. Recently, 60NiTi alloy gained some technological advantages due to advanced materials synthesis processes and progress in surface engineering. A feasibility study of 60NiTi bearings for space application has shown promise for its further development and suitability for other tribological applications. This report focuses on an overview of the properties and potential tribological and biomedical applications of 60NiTi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Paluri and S. Ingole, JOM 63 (6), 77 (2011).

    Article  Google Scholar 

  2. R. Harris and W. Roberts (Paper presented at the Surface Engineering Proceedings, 2006), pp. 201–209, 220

  3. T.-H. Huang, J.-U. Guo, and C.-T. Kao, Surf. Coat. Technol. 205, 1917 (2010).

    Article  Google Scholar 

  4. S. Kobayashi, Y. Ohgoe, K. Ozeki, K. Sato, T. Sumiya, K.K. Hirakuri, and H. Aoki, Diamond Rel. Mater. 14, 1094 (2005).

    Article  Google Scholar 

  5. T. Muguruma, M. Iijima, W.A. Brantley, and I. Mizoguchi, Angle Orthodont. 81, 141 (2011).

    Article  Google Scholar 

  6. M.J. Jackson, L.J. Hyde, W. Ahmed, H. Sein, and R.P. Flaxman, J. Mater. Eng. Perf. 13, 421 (2004).

    Article  Google Scholar 

  7. C.J.D. Spitzer, Fishing Vessel Casualty Task Force Report (Washington, DC: U.S. Coast Guard, 1999).

  8. C. William English, Pedestrian Slip Resistance: How to Measure It and How to Improve It, 2nd ed. (Alva, FL: William English, Inc., 2003).

    Google Scholar 

  9. W.J. Buehler, WOL oral history supplement—NITINOL re-examination, WOLAA LEAF VIII( I) (Olney, MD: White Oak Laboratory Alumni Association Inc, 2006).

  10. G. Kauffman and I. Mayo, Chem. Educ. 2, 1 (1997).

    Google Scholar 

  11. A. Sickinger (Paper presented at SMST-2003: The International Conference on Shape Memory and Superelastic Technologies, 2004)

  12. R.R. Adharapurapu and K.S. Vecchio, Experimen. Mech. 47, 365 (2007).

    Article  Google Scholar 

  13. Industry Updates, J. Failure Anal. Prevent. 11, 645 (2011).

    Article  Google Scholar 

  14. G.J. Julien, U.S. patent US6422010B1 (2002)

  15. C. DellaCorte, Lubricat. Eng. 65, 26 (2009).

    Google Scholar 

  16. M.K. Stanford, F. Thomas, and C. DellaCorte, Processing Issues for Preliminary Melts of the Intermetallic Compound 60-NITINOL (Washington, DC: NASA, 2012).

    Google Scholar 

  17. K. Otsuka and X. Ren, Progr. Mater. Sci. 50, 511 (2005).

    Article  Google Scholar 

  18. A.A. Khamei and K. Dehghani, Mater. Chem. Phys. 123, 269 (2010).

    Article  Google Scholar 

  19. S. Civjan, E.F. Huget, and L.B. DeSimon, J. Dental Res. 54, 89 (1975).

    Article  Google Scholar 

  20. S.A. Thompson, Int. Endodont. J. 33, 297 (2000).

    Article  Google Scholar 

  21. K. Dehghani and A.A. Khamei, Mater. Sci. Eng., A 527, 684 (2010).

    Article  Google Scholar 

  22. R.R. Adharapurapu, Phase Transformations in Nickel-Rich Nickel-Titanium Alloys: Influence of Strain-Rate, Temperature, Thermomechanical Treatment and Nickel Composition on the Shape Memory and Superelastic Characteristics (2007), Ph.D. Dissertation, University of California, San Diego.

  23. A. Khamei and K. Dehghani, Metall. Mater. Trans. A 41, 2595 (2010).

    Article  Google Scholar 

  24. G.J. Julien, U.S. patent US8047552B2 (2011)

  25. W.J. Buehler, R.E. Jones, E.F. Heintzelman, and R.H. Lundsten, DTIC Document (White Oak, MD: Naval Ordinance Lab, 1973).

  26. C. DellaCorte, S. Pepper, R. Noebe, D. Hull, and G. Glennon, Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications (Cleveland, OH: NASA, 2009).

    Google Scholar 

  27. M.D. McNeese, D.C. Lagoudas, and T.C. Pollock, Mater. Sci. Eng., A 280, 334 (2000).

    Article  Google Scholar 

  28. C. DellaCorte and G.N. Glennon, U.S. patent 8182741 (2012)

  29. G.J. Julien, EP patent 1,224,045 (2002)

  30. G.J. Julien, U.S. patent US6293020B1 (2001)

  31. G.J. Julien, U.S. patent US6571665B2 (2003)

  32. G.J. Julien, U.S. patent US6267402B1 (2001)

  33. G.J. Julien, U.S. patent US2002/0187020A1 (2002)

  34. C. DellaCorte, E. Lewis III, and J.S. Clifton, Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings (2012)

  35. C. DellaCorte, R.D. Noebe, M. Stanford, and S.A. Padula (Paper presented at the 2011 Symposium on Rolling Element Bearings sponsored by the American Society of Testing and Materials, Anaheim, CA, 13–14 April 2011)

  36. S.V. Pepper, C. DellaCorte, R.D. Noebe, D.R. Hull, and G. Glennon, ESMATS (Washington, DC: NASA, 2009).

  37. C.M. Jackson, H. Wagner, and R.J. Wasilewski, NASA SP-5110 NASA Special Publication 5110 (Washington, DC: NASA, 1972).

  38. C.M. Chan, S. Trigwell, and T. Duerig, Surf. Interf. Anal. 15, 349 (2004).

    Article  Google Scholar 

  39. G. Firstov, R. Vitchev, H. Kumar, B. Blanpain, and J. Van Humbeeck, Biomaterials 23, 4863 (2002).

    Article  Google Scholar 

  40. G.G. Guo, X. Zheng, Z. Liu, Q.L. An, and M. Chen, Key Eng. Mater. 487, 34 (2011).

    Article  Google Scholar 

  41. J.V. Gould, Machinability of Nickel-Titanium Alloys (Cincinnati, OH: DTIC Document, Metcut Research Associates, Inc., 1963).

    Google Scholar 

  42. Nitinol 60 Machined to Tight Tolerances, http://asmcommunity.asminternational.org/portal/site/www/NewsItem/?vgnextoid=1a32455d023e7210VgnVCM100000621e010aRCRD

  43. Abbott Ball Solves Nitinol 60 Machining Problems, 2013, http://news.thomasnet.com/companystory/Abbott-Ball-Solves-Nitinol-60-Machining-Problems-573917

  44. S.V. Pepper, C. DellaCorte, and G. Glennon, Lubrication of Nitinol 60 (2010)

  45. S. Ingole, H. Liang, and P. Mohanty (Paper presented at the 4th ASM International Surface Engineering Congress and 19th International Conference on Surface Modification Technologies, 1–3 August 2005)

  46. C. DellaCorte and W.A. Wozniak (Paper presented at the 41st Aerospace Mechanisms Symposium, 2012)

  47. Golden Star Surgical Industries homepage, 2013, http://goldenstarsurgical.com/enterwebsite/

  48. M.P. Wells, Surgical Instruments: A Pocket Guide (St. Louis, MO: Saunders, 2010).

    Google Scholar 

  49. SM-100 Knives, Summit Materials, LLC, website, 2013, http://www.summitmaterials.com/sm-100/knives/

  50. H. Kapczynski, Surgical Instruments 101-An Introduction to KMedic Certified Instruments, 1997, http://www.teleflex.com/en/usa/pdf/KMedic_Surgical_Instruments_101.pdf

  51. Y.-T. Kim and D.-E. Kim, Advanced Tribology, ed. J. Luo, et al. (Berlin: Springer, 2010), p. 859–60

  52. M.A. Baumann, Dental Clin. North Am. 48, 55 (2004).

    Article  Google Scholar 

  53. S. Saito, T. Wachi, and S. Hanada, Mater. Sci. Eng., A 161, 91 (1993).

    Article  Google Scholar 

  54. Y. Furuya, A. Sasaki, and M. Taya, JIM, Mater. Trans. 34, 224 (1993).

    Google Scholar 

  55. M. Taya, A. Shimamoto, Y. Furuya, and O.-g. Okabe-cho, Proceedings of the 10th International Conference on Composite Materials, ICCM-10, ed. A. Poursatip and K. Street (Cambridge, U.K.: Woodhead Publishing Limited, 1995)

  56. Committee for a Review of Adaptive Structure Materials Research That Could Pose a Threat to US National Security, Adaptive Materials and Structures: A Workshop Report (Washington, DC: The National Academies Press, 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeep Ingole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingole, S. 60NiTi Alloy for Tribological and Biomedical Surface Engineering Applications. JOM 65, 792–798 (2013). https://doi.org/10.1007/s11837-013-0610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0610-7

Keywords

Navigation