Skip to main content

A Benchmark Library of Mixed-Integer Optimal Control Problems

  • Conference paper
  • First Online:
Mixed Integer Nonlinear Programming

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 154))

Abstract

Numerical algorithm developers need standardized test instances for empirical studies and proofs of concept. There are several libraries available for _nitedimensional optimization, such as the netlib or the miplib. However, for mixed-integer optimal control problems (MIOCP) this is not yet the case. One explanation for this is the fact that no dominant standard format has been established yet. In many cases instances are used in a discretized form, but without proper descriptions on the modeling assumptions and discretizations that have been applied. In many publications crucial values, such as initial values, parameters, or a concise de_nition of all constraints are missing. In this contribution we intend to establish the basis for a benchmark library of mixed-integer optimal control problems that is meant to be continuously extended online on the open community web page http://mintoc.de. The guiding principles will be comprehensiveness, a detailed description of where a model comes from and what the underlying assumptions are, a clear distinction between problem and method description (such as a discretization in space or time), reproducibility of solutions and a standardized problem formulation. Also, the problems will be classi_ed according to model and solution characteristics. We do not benchmark MIOCP solvers, but provide a library infrastructure and sample problems as a basis for future studies. A second objective is to formulate mixed-integer nonlinear programs (MINLPs) originating from these MIOCPs. The snag is of course that we need to apply one out of several possible method-speci_c discretizations in time and space in the _rst place to obtain a MINLP. Yet the resulting MINLPs originating from control problems with an indication of the currently best known solution are hopefully a valuable test set for developers of generic MINLP solvers. The problem speci_cations can also be downloaded from http://mintoc.de.

AMS(MOS) subject classifications. Primary 1234, 5678, 9101112.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Abichandani, H. Benson, and M. Kam, Multi-vehicle path coordination under communication constraints, in American Control Conference, 2008, pp. 650–656.

    Google Scholar 

  2. W. Achtziger and C. Kanzow, Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications, Mathematical Programming Series A, 114 (2008), pp. 69–99.

    Article  MathSciNet  MATH  Google Scholar 

  3. E.S. Agency, GTOP database: Global optimisation trajectory problems and solutions. http://www.esa.int/gsp/ACT/inf/op/globopt.htm.

  4. AT&T Bell Laboratories, University of Tennessee, and Oak Ridge National Laboratory, Netlib linear programming library. http://www.netlib.org/lp/.

  5. B. Baumrucker and L. Biegler, MPEC strategies for optimization of a class of hybrid dynamic systems, Journal of Process Control, 19 (2009), pp. 1248 – 1256. Special Section on Hybrid Systems: Modeling, Simulation and Optimization.

    Google Scholar 

  6. B. Baumrucker, J. Renfro, and L. Biegler, MPEC problem formulations and solution strategies with chemical engineering applications, Computers and Chemical Engineering, 32 (2008), pp. 2903–2913.

    Article  Google Scholar 

  7. L. Biegler, Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation, Computers and Chemical Engineering, 8 (1984), pp. 243–248.

    Article  Google Scholar 

  8. T. Binder, L. Blank, H. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder, W. Marquardt, J. Schl¨oder, and O. Stryk, Introduction to model based optimization of chemical processes on moving horizons, in Online Optimization of Large Scale Systems: State of the Art, M. Gr¨otschel, S. Krumke, and J. Rambau, eds., Springer, 2001, pp. 295–340.

    Google Scholar 

  9. H. Bock and R. Longman, Computation of optimal controls on disjoint control sets for minimum energy subway operation, in Proceedings of the American Astronomical Society. Symposium on Engineering Science and Mechanics, Taiwan, 1982.

    Google Scholar 

  10. H. Bock and K. Plitt, A Multiple Shooting algorithm for direct solution of optimal control problems, in Proceedings of the 9th IFAC World Congress, Budapest, 1984, Pergamon Press, pp. 243–247. Available at http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf.

  11. J. Burgschweiger, B. Gn¨adig, and M. Steinbach, Nonlinear programming techniques for operative planning in large drinking water networks, The Open Applied Mathematics Journal, 3 (2009), pp. 1–16.

    Google Scholar 

  12. M. Bussieck, Gams performance world. http://www.gamsworld.org/performance.

  13. M.R. Bussieck, A.S. Drud, and A. Meeraus, Minlplib–a collection of test models for mixed-integer nonlinear programming, INFORMS J. on Computing, 15 (2003), pp. 114–119.

    Article  MathSciNet  Google Scholar 

  14. B. Chachuat, A. Singer, and P. Barton, Global methods for dynamic optimization and mixed-integer dynamic optimization, Industrial and Engineering Chemistry Research, 45 (2006), pp. 8573–8392.

    Article  Google Scholar 

  15. CMU-IBM, Cyber-infrastructure for MINLP collaborative site. http://minlp.org.

  16. M. Diehl and A.Walther, A test problem for periodic optimal control algorithms, tech. rep., ESAT/SISTA, K.U. Leuven, 2006.

    Google Scholar 

  17. S. Engell and A. Toumi, Optimisation and control of chromatography, Computers and Chemical Engineering, 29 (2005), pp. 1243–1252.

    Article  Google Scholar 

  18. W. Esposito and C. Floudas, Deterministic global optimization in optimal control problems, Journal of Global Optimization, 17 (2000), pp. 97–126.

    Article  MathSciNet  MATH  Google Scholar 

  19. European Network of Excellence Hybrid Control, Website. http://www.ist-hycon.org/.

  20. B.C. Fabien, dsoa: Dynamic system optimization. http://abs-5.me.washington.edu/noc/dsoa.html.

  21. A. Filippov, Differential equations with discontinuous right hand side, AMS Transl., 42 (1964), pp. 199–231.

    Google Scholar 

  22. A. F¨ugenschuh, M. Herty, A. Klar, and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks, SIAM Journal on Optimization, 16 (2006), pp. 1155–1176.

    Google Scholar 

  23. A. Fuller, Study of an optimum nonlinear control system, Journal of Electronics and Control, 15 (1963), pp. 63–71.

    Article  MathSciNet  Google Scholar 

  24. W. Garrard and J. Jordan, Design of nonlinear automatic control systems, Automatica, 13 (1977), pp. 497–505.

    Article  MATH  Google Scholar 

  25. M. Gerdts, Solving mixed-integer optimal control problems by Branch&Bound: A case study from automobile test-driving with gear shift, Optimal Control Applications and Methods, 26 (2005), pp. 1–18.

    Article  MathSciNet  Google Scholar 

  26. , A variable time transformation method for mixed-integer optimal control problems, Optimal Control Applications and Methods, 27 (2006), pp. 169–182.

    Google Scholar 

  27. S. G¨ottlich, M. Herty, C. Kirchner, and A. Klar, Optimal control for continuous supply network models, Networks and Heterogenous Media, 1 (2007), pp. 675–688.

    Google Scholar 

  28. N. Gould, D. Orban, and P. Toint, CUTEr testing environment for optimization and linear algebra solvers. http://cuter.rl.ac.uk/cuter-www/.

  29. I. Grossmann, Review of nonlinear mixed-integer and disjunctive programming techniques, Optimization and Engineering, 3 (2002), pp. 227–252.

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Grossmann, P. Aguirre, and M. Barttfeld, Optimal synthesis of complex distillation columns using rigorous models, Computers and Chemical Engineering, 29 (2005), pp. 1203–1215.

    Article  Google Scholar 

  31. M. Gugat, M. Herty, A. Klar, and G. Leugering, Optimal control for traffic flow networks, Journal of Optimization Theory and Applications, 126 (2005), pp. 589–616.

    Article  MathSciNet  MATH  Google Scholar 

  32. T.O. Inc., Propt - matlab optimal control software (dae, ode). http://tomdyn.com/.

  33. A. Izmailov and M. Solodov, Mathematical programs with vanishing constraints: Optimality conditions, sensitivity, and a relaxation method, Journal of Optimization Theory and Applications, 142 (2009), pp. 501–532.

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Kawajiri and L. Biegler, A nonlinear programming superstructure for optimal dynamic operations of simulated moving bed processes, I&EC Research, 45 (2006), pp. 8503–8513.

    Google Scholar 

  35. , Optimization strategies for Simulated Moving Bed and PowerFeed processes, AIChE Journal, 52 (2006), pp. 1343–1350.

    Google Scholar 

  36. C. Kaya and J. Noakes, A computational method for time-optimal control, Journal of Optimization Theory and Applications, 117 (2003), pp. 69–92.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Kirches, S. Sager, H. Bock, and J. Schl¨oder, Time-optimal control of automobile test drives with gear shifts, Optimal Control Applications and Methods, 31 (2010), pp. 137–153.

    Google Scholar 

  38. P. Kr¨amer-Eis, Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback–Steuerungen bei beschr¨ankten nichtlinearen Steuerungsproblemen, Vol. 166 of Bonner Mathematische Schriften, Universit¨at Bonn, Bonn, 1985.

    Google Scholar 

  39. U. Kummer, L. Olsen, C. Dixon, A. Green, E. Bornberg-Bauer, and G. Baier, Switching from simple to complex oscillations in calcium signaling, Biophysical Journal, 79 (2000), pp. 1188–1195.

    Article  Google Scholar 

  40. L. Larsen, R. Izadi-Zamanabadi, R. Wisniewski, and C. Sonntag, Supermarket refrigeration systems – a benchmark for the optimal control of hybrid systems, tech. rep., Technical report for the HYCON NoE., 2007. http://www.bci.tu-dortmund.de/ast/hycon4b/index.php.

  41. D. Lebiedz, S. Sager, H. Bock, and P. Lebiedz, Annihilation of limit cycle oscillations by identification of critical phase resetting stimuli via mixed-integer optimal control methods, Physical Review Letters, 95 (2005), p. 108303.

    Article  Google Scholar 

  42. H. Lee, K. Teo, V. Rehbock, and L. Jennings, Control parametrization enhancing technique for time-optimal control problems, Dynamic Systems and Applications, 6 (1997), pp. 243–262.

    MathSciNet  MATH  Google Scholar 

  43. D. Leineweber, Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models, Vol. 613 of Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, VDI Verlag, D¨usseldorf, 1999.

    Google Scholar 

  44. A. Martin, T. Achterberg, T. Koch, and G. Gamrath, Miplib - mixed integer problem library. http://miplib.zib.de/.

  45. A. Martin, M. M¨oller, and S. Moritz, Mixed integer models for the stationary case of gas network optimization, Mathematical Programming, 105 (2006), pp. 563–582.

    Google Scholar 

  46. J. Oldenburg, Logic–based modeling and optimization of discrete–continuous dynamic systems, Vol. 830 of Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, VDI Verlag, D¨usseldorf, 2005.

    Google Scholar 

  47. J. Oldenburg and W. Marquardt, Disjunctive modeling for optimal control of hybrid systems, Computers and Chemical Engineering, 32 (2008), pp. 2346–2364.

    Article  Google Scholar 

  48. I. Papamichail and C. Adjiman, Global optimization of dynamic systems, Computers and Chemical Engineering, 28 (2004), pp. 403–415.

    Article  Google Scholar 

  49. L. Pontryagin, V. Boltyanski, R. Gamkrelidze, and E. Miscenko, The Mathematical Theory of Optimal Processes, Wiley, Chichester, 1962.

    Google Scholar 

  50. A. Prata, J. Oldenburg, A. Kroll, and W. Marquardt, Integrated scheduling and dynamic optimization of grade transitions for a continuous polymerization reactor, Computers and Chemical Engineering, 32 (2008), pp. 463–476.

    Article  Google Scholar 

  51. V. Rehbock and L. Caccetta, Two defence applications involving discrete valued optimal control, ANZIAM Journal, 44 (2002), pp. E33–E54.

    Article  MathSciNet  Google Scholar 

  52. S. Sager, MIOCP benchmark site. http://mintoc.de.

  53. S. Sager, Numerical methods for mixed–integer optimal control problems, Der andere Verlag, T¨onning, L¨ubeck, Marburg, 2005. ISBN 3-89959-416-9. Available at http://sager1.de/sebastian/downloads/Sager2005.pdf.

  54. S. Sager, Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control, Journal of Process Control, 19 (2009), pp. 1238–1247.

    Article  Google Scholar 

  55. S. Sager, H. Bock, M. Diehl, G. Reinelt, and J. Schl¨oder, Numerical methods for optimal control with binary control functions applied to a Lotka-Volterra type fishing problem, in Recent Advances in Optimization (Proceedings of the 12th French-German-Spanish Conference on Optimization), A. Seeger, ed., Vol. 563 of Lectures Notes in Economics and Mathematical Systems, Heidelberg, 2006, Springer, pp. 269–289.

    Google Scholar 

  56. S. Sager, M. Diehl, G. Singh, A. K¨upper, and S. Engell, Determining SMB superstructures by mixed-integer control, in Proceedings OR2006, K.-H. Waldmann and U. Stocker, eds., Karlsruhe, 2007, Springer, pp. 37–44.

    Google Scholar 

  57. S. Sager, C. Kirches, and H. Bock, Fast solution of periodic optimal control problems in automobile test-driving with gear shifts, in Proceedings of the 47th IEEE Conference on Decision and Control (CDC 2008), Cancun, Mexico, 2008, pp. 1563–1568. ISBN: 978-1-4244-3124-3.

    Google Scholar 

  58. S. Sager, G. Reinelt, and H. Bock, Direct methods with maximal lower bound for mixed-integer optimal control problems, Mathematical Programming, 118 (2009), pp. 109–149.

    Article  MathSciNet  MATH  Google Scholar 

  59. K. Schittkowski, Test problems for nonlinear programming - user’s guide, tech. rep., Department of Mathematics, University of Bayreuth, 2002.

    Google Scholar 

  60. C. Sonntag, O. Stursberg, and S. Engell, Dynamic optimization of an industrial evaporator using graph search with embedded nonlinear programming, in Proc. 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (ADHS), 2006, pp. 211–216.

    Google Scholar 

  61. B. Srinivasan, S. Palanki, and D. Bonvin, Dynamic Optimization of Batch Processes: I. Characterization of the nominal solution, Computers and Chemical Engineering, 27 (2003), pp. 1–26.

    Google Scholar 

  62. M. Szymkat and A. Korytowski, The method of monotone structural evolution for dynamic optimization of switched systems, in IEEE CDC08 Proceedings, 2008.

    Google Scholar 

  63. M. Zelikin and V. Borisov, Theory of chattering control with applications to astronautics, robotics, economics and engineering, Birkh¨auser, Basel Boston Berlin, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sager, S. (2012). A Benchmark Library of Mixed-Integer Optimal Control Problems. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1927-3_22

Download citation

Publish with us

Policies and ethics