Skip to main content
Log in

Direct methods with maximal lower bound for mixed-integer optimal control problems

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Many practical optimal control problems include discrete decisions. These may be either time-independent parameters or time-dependent control functions as gears or valves that can only take discrete values at any given time. While great progress has been achieved in the solution of optimization problems involving integer variables, in particular mixed-integer linear programs, as well as in continuous optimal control problems, the combination of the two is yet an open field of research. We consider the question of lower bounds that can be obtained by a relaxation of the integer requirements. For general nonlinear mixed-integer programs such lower bounds typically suffer from a huge integer gap. We convexify (with respect to binary controls) and relax the original problem and prove that the optimal solution of this continuous control problem yields the best lower bound for the nonlinear integer problem. Building on this theoretical result we present a novel algorithm to solve mixed-integer optimal control problems, with a focus on discrete-valued control functions. Our algorithm is based on the direct multiple shooting method, an adaptive refinement of the underlying control discretization grid and tailored heuristic integer methods. Its applicability is shown by a challenging application, the energy optimal control of a subway train with discrete gears and velocity limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alamir, M., Attia, S.A.: On solving optimal control problems for switched hybrid nonlinear systems by strong variations algorithms. In: 6th IFAC Symposium, NOLCOS, Stuttgart, Germany (2004)

  2. Allgor R. and Barton P. (1999). Mixed-integer dynamic optimization. I-Problem formulation. Comput. Chem. Eng. 23(4): 567–584

    Article  Google Scholar 

  3. Antsaklis, P., Koutsoukos, X.: On hybrid control of complex systems: a survey. In: 3rd International conference ADMP’98, automation of mixed processes: dynamic hybrid systems, pp. 1–8. Reims, France (1998)

  4. Attia, S., Alamir, M., Canudas de Wit, C.: Sub optimal control of switched nonlinear systems under location and switching constraints. In: IFAC World Congress (2005)

  5. Aumann R. (1965). Integrals of set-valued functions. J. Math. Anal. Appl. 12: 1–12

    Article  MATH  MathSciNet  Google Scholar 

  6. Bansal V., Sakizlis V., Ross R., Perkins J. and Pistikopoulos E. (2003). New algorithms for mixed-integer dynamic optimization. Comput. Chem. Eng. 27: 647–668

    Article  Google Scholar 

  7. Bär, V.: Ein Kollokationsverfahren zur numerischen Lösung allgemeiner Mehrpunktrandwertaufgaben mit Schalt und Sprungbedingungen mit Anwendungen in der optimalen Steuerung und der Parameteridentifizierung. Master’s Thesis, Universität Bonn (1984)

  8. Barton P. and Lee C. (2002). Modeling, simulation, sensitivity analysis and optimization of hybrid systems. ACM Trans. Model. Comput. Simul. 12(4): 256–289

    Article  Google Scholar 

  9. Barton P. and Lee C. (2004). Design of process operations using hybrid dynamic optimization. Comput. Chem. Eng. 28(6–7): 955–969

    Article  Google Scholar 

  10. Biegler L. (1984). Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Eng. 8: 243–248

    Article  Google Scholar 

  11. Binder T., Blank L., Bock H., Bulirsch R., Dahmen W., Diehl M., Kronseder T., Marquardt W., Schlöder J. and Stryk O.  (2001). Introduction to model based optimization of chemical processes on moving horizons. In: Grötschel, M., Krumke, S., and Rambau, J. (eds) Online Optimization of Large Scale Systems: State of the Art, pp 295–340. Springer, Heidelberg

    Google Scholar 

  12. Bock, H., Eich, E., Schlöder, J.: Numerical solution of constrained least squares boundary value problems in differential-algebraic equations. In: Strehmel, K. (ed.) Numerical Treatment of Differential Equations. Teubner, Leipzig (1988)

  13. Bock, H., Longman, R.: Computation of optimal controls on disjoint control sets for minimum energy subway operation. In: Proceedings of the American Astronomical Society. Symposium on Engineering Science and Mechanics. Taiwan (1982)

  14. Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings 9th IFAC World Congress Budapest, pp. 243–247. Pergamon Press, NY, USA (1984)

  15. Brandt-Pollmann, U.: Numerical solution of optimal control problems with implicitly defined discontinuities with applications in engineering. Ph.D. thesis, IWR, Universität Heidelberg (2004)

  16. Burgschweiger, J., Gnädig, B., Steinbach, M.: Optimization models for operative planning in drinking water networks. Technical report, ZR-04-48, ZIB (2004)

  17. Buss M., Glocker M., Hardt M., Stryk O.v., Bulirsch R. and Schmidt G. (2002). Nonlinear Hybrid Dynamical Systems: Modelling, Optimal Control, and Applications, vol. 279. Springer, Berlin

    Google Scholar 

  18. Chachuat B., Singer A. and Barton P. (2006). Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45(25): 8573–8392

    Article  Google Scholar 

  19. Diehl, M., Leineweber, D., Schäfer, A.: MUSCOD-II Users’ Manual. IWR-Preprint 2001-25, Universität Heidelberg (2001)

  20. Duran M. and Grossmann I. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3): 307–339

    Article  MATH  MathSciNet  Google Scholar 

  21. Esposito W. and Floudas C. (2000). Deterministic global optimization in optimal control problems. J. Glob. Optim. 17: 97–126

    Article  MATH  MathSciNet  Google Scholar 

  22. Floudas C., Akrotirianakis I., Caratzoulas S., Meyer C. and Kallrath J. (2005). Global optimization in the 21st century: Advances and challenges. Comput. Chem. Eng. 29(6): 1185–1202

    Article  Google Scholar 

  23. Fuller A. (1963). Study of an optimum nonlinear control system. J. Electron. Control 15: 63–71

    MathSciNet  Google Scholar 

  24. Gallitzendörfer J., Bock H.: Parallel algorithms for optimization boundary value problems in DAE. In: Langendörfer H. (ed.) Praxisorientierte Parallelverarbeitung. Hanser, München (1994)

  25. Gerdts M. (2006). A variable time transformation method for mixed-integer optimal control problems. Optim. Control Appl. Methods 27(3): 169–182

    Article  MathSciNet  Google Scholar 

  26. Grossmann I. (2002). Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3: 227–252

    Article  MATH  MathSciNet  Google Scholar 

  27. Grossmann I., Aguirre P. and Barttfeld M. (2005). Optimal synthesis of complex distillation columns using rigorous models. Comput. Chem. Eng. 29: 1203–1215

    Article  Google Scholar 

  28. Hermes H. and Lasalle J. (1969). Functional analysis and time optimal control, Mathematics in science and engineering, vol. 53. Academic, New York

    Book  Google Scholar 

  29. Kawajiri, Y., Biegler, L.: Large-scale optimization strategies for zone configuration of simulated moving beds. In: 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, pp. 131–136. Elsevier, Amsterdam (2006)

  30. Kaya C. and Noakes J. (1996). Computations and time-optimal controls. Optim. Control Appl. Methods 17: 171–185

    Article  MATH  MathSciNet  Google Scholar 

  31. Kaya C. and Noakes J. (2003). A computational method for time-optimal control. J. Optim. Theory Appl. 117: 69–92

    Article  MATH  MathSciNet  Google Scholar 

  32. Krämer-Eis P. (1985). Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen, Bonner Mathematische Schriften, vol. 166. Universität Bonn, Bonn

    Google Scholar 

  33. Laurent-Varin, J., Bonnans, F., Berend, N., Talbot, C., Haddou, M.: On the refinement of discretization for optimal control problems. IFAC Symposium on Automatic Control in Aerospace, St Petersburg (2004)

  34. Lebiedz, D., Sager, S., Bock, H., Lebiedz, P.: Annihilation of limit cycle oscillations by identification of critical phase resetting stimuli via mixed-integer optimal control methods. Phys. Rev. Lett. 95, 108,303 (2005)

    Google Scholar 

  35. Lee C., Singer A. and Barton P. (2004). Global optimization of linear hybrid systems with explicit transitions. Syst. Control Lett. 51(5): 363–375

    Article  MATH  MathSciNet  Google Scholar 

  36. Lee H., Teo K., Jennings L. and Rehbock V. (1999). Control parametrization enhancing technique for optimal discrete-valued control problems. Automatica 35(8): 1401–1407

    Article  MATH  MathSciNet  Google Scholar 

  37. Leineweber D. (1999). Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 613. VDI Verlag, Düsseldorf

    Google Scholar 

  38. Leineweber D., Bauer I., Bock H. and Schlöder J. (2003). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part I: Theoretical aspects. Comput. Chem. Eng. 27: 157–166

    Article  Google Scholar 

  39. Maurer H., Büskens C., Kim J. and Kaya Y. (2005). Optimization methods for the verification of second-order sufficient conditions for bang–bang controls. Optim. Control Methods Appl. 26: 129–156

    Article  Google Scholar 

  40. Maurer H. and Osmolovskii N.P. (2004). Second order sufficient conditions for time-optimal bang–bang control. SIAM J. Control Optim. 42: 2239–2263

    Article  MATH  MathSciNet  Google Scholar 

  41. Mohideen M., Perkins J. and Pistikopoulos E. (1997). Towards an efficient numerical procedure for mixed integer optimal control. Comput. Chem. Eng. 21: S457–S462

    Google Scholar 

  42. Neustadt L. (1963). The existence of optimal controls in absence of convexity conditions. J. Math. Anal. Appl. 7: 110–117

    Article  MATH  MathSciNet  Google Scholar 

  43. Oldenburg J. (2005). Logic-based modeling and optimization of discrete-continuous dynamic systems, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 830. VDI Verlag, Düsseldorf

    Google Scholar 

  44. Oldenburg J., Marquardt W., Heinz D. and Leineweber D. (2003). Mixed logic dynamic optimization applied to batch distillation process design. AIChE J. 49(11): 2900–2917

    Article  Google Scholar 

  45. Papamichail I. and Adjiman C. (2004). Global optimization of dynamic systems. Comput. Chem. Eng. 28: 403–415

    Article  Google Scholar 

  46. Plitt, K.: Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter optimaler Steuerungen. Master’s Thesis, Universität Bonn (1981)

  47. Rehbock V. and Caccetta L. (2002). Two defence applications involving discrete valued optimal control. ANZIAM J. 44(E): E33–E54

    MathSciNet  Google Scholar 

  48. Sager, S.: Numerical methods for mixed-integer optimal control problems. Der andere Verlag, Tönning, Lübeck, Marburg. ISBN 3-89959-416-9. Available at http://sager1.de/sebastian/downloads/Sager2005.pdf (2005)

  49. Sager S., Bock H., Diehl M., Reinelt G. and Schlöder J. (2006). Numerical methods for optimal control with binary control functions applied to a Lotka-Volterra type fishing problem. In: Seeger, A. (eds) Recent Advances in Optimization (Proceedings of the 12th French-German-Spanish Conference on Optimization), Lectures Notes in Economics and Mathematical Systems, vol. 563, pp 269–289. Springer, Heidelberg

    Google Scholar 

  50. Sager, S., Diehl, M., Singh, G., Küpper, A., Engell, S.: Determining SMB superstructures by mixed-integer control. In: Proceedings of OR2006. Karlsruhe (2007)

  51. Sager, S., Kawajiri, Y., Biegler, L.: On the optimality of superstructures for simulated moving beds: Is one pump sufficient for each stream? AIChE J. (2007) (submitted)

  52. Schäfer, A.: Efficient reduced Newton-type methods for solution of large-scale structured optimization problems with application to biological and chemical processes. Ph.D. thesis, Universität Heidelberg (2005)

  53. Schlegel M. (2005). Adaptive discretization methods for the efficient solution of dynamic optimization problems, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 829. VDI Verlag, Düsseldorf

    Google Scholar 

  54. Schlöder J. (1988). Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung, Bonner Mathematische Schriften, vol. 187. Universität Bonn, Bonn

    Google Scholar 

  55. Schulz V., Bock H. and Steinbach M. (1998). Exploiting invariants in the numerical solution of multipoint boundary value problems for DAEs. SIAM J. Sci. Comput. 19: 440–467

    Article  MATH  MathSciNet  Google Scholar 

  56. Schweiger C. and Floudas C. (1997). Interaction of design and control: Optimization with dynamic models. In: Hager, W. and Pardalos, P. (eds) Optimal Control: Theory, Algorithms and Applications, pp 388–435. Kluwer, Dordrecht

    Google Scholar 

  57. Shaikh M. (2004) Optimal control of hybrid systems: Theory and algorithms. Ph.D. Thesis, Department of Electrical and Computer Engineering, McGill University, Montreal, Canada

  58. Shaikh, M., Caines, P.: On the hybrid optimal control problem: Theory and algorithms. IEEE Transactions on Automatic Control (2006) (in press)

  59. Srinivasan B., Palanki S. and Bonvin D. (2003). Dynamic Optimization of Batch Processes: I. Characterization of the nominal solution. Comput. Chem. Eng. 27: 1–26

    Article  Google Scholar 

  60. Stryk, O., Glocker, M.: Decomposition of mixed-integer optimal control problems using branch and bound and sparse direct collocation. In: Proceedings of ADPM 2000. The 4th international conference on automatisation of mixed processes: hybrid dynamical systems, pp. 99–104 (2000)

  61. Stursberg O., Panek S., Till J. and Engell S. (2002). Generation of optimal control policies for systems with switched hybrid dynamics. In: Engell, S., Frehse, G., and Schnieder, E. (eds) Modelling, Analysis and Design of Hybrid Systems, pp 337–352. Springer, Heidelberg

    Chapter  Google Scholar 

  62. Sussmann, H.: A maximum principle for hybrid optimal control problems. In: Conference proceedings of the 38th IEEE conference on decision and control. Phoenix (1999)

  63. Terwen, S., Back, M., Krebs, V.: Predictive powertrain control for heavy duty trucks. In: Proceedings of IFAC symposium in advances in automotive control, pp. 451–457. Salerno, Italy (2004)

  64. Till J., Engell S., Panek S. and Stursberg O. (2004). Applied hybrid system optimization: An empirical investigation of complexity. Control Eng. 12: 1291–1303

    Article  Google Scholar 

  65. Turkay M. and Grossmann I. (1996). Logic-based MINLP algorithms for the optimal synthesis of process networks. Comput. Chem. Eng. 20: 959–978

    Article  Google Scholar 

  66. Zelikin M. and Borisov V. (1994). Theory of chattering control with applications to astronautics, robotics, economics and engineering. Birkhäuser, Basel

    MATH  Google Scholar 

  67. Zhang J., Johansson K., Lygeros J. and Sastry S. (2001). Zeno hybrid systems. Int. J. Robust Nonlinear Control 11: 435–451

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Sager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sager, S., Bock, H.G. & Reinelt, G. Direct methods with maximal lower bound for mixed-integer optimal control problems. Math. Program. 118, 109–149 (2009). https://doi.org/10.1007/s10107-007-0185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0185-6

Keywords

Mathematics Subject Classification (2000)

Navigation