Skip to main content

Neglected Biological Features in Cnidarians Self-Nonself Recognition

  • Chapter
Self and Nonself

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 738))

Abstract

Cnidarian taxa, currently of the most morphologically simplest extant metazoans, exhibit many salient properties of innate immunity that are shared by most Animalia. One hallmark constituent of immunity exhibit by most cnidarians is histocompatibility, marked by wide spectrum of allogeneic and xenogeneic effector arms, progressing into tissue fusions oRinflammatory rejections. Scientific propensity on cnidarians immunity, while discussing historecognition as the ground for immunity in these organisms, concentrates on host-parasitic and disease oriented studies, or focuses on genome approaches that search for gene homologies with the vertebrates. Above tendency for mixing up between historecognition and host-parasitic/disease, highlights a serious obstacle for the progress in our understanding of cnidarian immunobiology. Here I critically overview four ‘forgotten’ cnidarian immune features, namely, specificity, immunological memory, allogeneic maturation and natural chimerism, presenting insights into perspectives that are prerequisite for any discussion on cnidarian evolution. It is evident that cnidarian historecognition embraces elements that the traditional field of vertebrate immunology has never encountered (i.e., variety of cytotoxic outcomes, different types of effector mechanisms, chimerism, etc.). Also, cnidarian immune features dictating that different individuals within the same species seem to respond differently to the same immunological challenge, is far from that recorded in the vertebrates’ adaptive immunity. While above features may be connected to host-parasitic and disease phenomena and effector arms, they clearly attest to their unique critical roles in shaping cnidarians historecognition, calling for improved distinction between historecognition and host-response/ disease disciplines. The research on cnidarians immunity still suffers from the lack of accepted synthesis of what historecognition is or does. Mounting of an immune response against conspecifics or xenogeneic organisms should therefore be clearly demarcated from other paths of immunity, till cnidarian innate immunity as a whole is expounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rinkevich B. Invertebrates versus vertebrates innate immunity: in the light of evolution. Scand J Immunol 1999; 50:456–460.

    Article  PubMed  CAS  Google Scholar 

  2. Rinkevich B. Allorecognition and xenorecognition in reef corals: A decade of interactions. Hydrobiologia 2004; 430/531:443–450.

    Article  Google Scholar 

  3. Dunn SR. Immunorecognition and immunoreceptors in the Cnidaria. Invertebrate Survival Journal 2009; 6:7–14.

    Google Scholar 

  4. Leddy V, Green DR. Historecognition of the Cnidaria. In: Warr GW, Cohen R, eds. Phylogenesis of Immune Functions. CRC Press, 1991:103–116.

    Google Scholar 

  5. Rinkevich B. Immune responsiveness in colonial marine invertebrates revisited: the concourse of puzzles. In: Söderhäll K, Vasta G, Iwanaga S, eds. Invertebrate Immunology. Fair Haven, NJ: SOS Publications 1996:55–90.

    Chapter  Google Scholar 

  6. Rinkevich B. Links between alloresponses and their genetic background in colonial urochordates and cnidarians: evidence for the recognition of “nonself” as opposed to “self”. In: Stolen JS, Fletcher TC, Bayne CJ et al, eds. Modulators of Immune Responses, The Evolutionary Trail. Fair Haven, NJ: SOS Publications, 1996:1–13.

    Google Scholar 

  7. Lang JC, Chornesky EA. Competition between scleractinian reef corals—a review of the mechanism and effects. In: Dubinsky Z, ed. Ecosystems of the world; Coral Reefs. Amsterdam: Elsevier, 1990:209–252.

    Google Scholar 

  8. Tanner JE. Interspecific competition reduces fitness in scleractinian corals. J Exp Mar Biol Ecol 1997; 214:19–34.

    Article  Google Scholar 

  9. Rinkevich B, Loya Y. Intraspecific competitive networks in the Red Sea coral Stylophora pistillata. Coral Reefs 1983; 1:161–172.

    Article  Google Scholar 

  10. Rinkevich B, Shashar, N, Liberman T. Nontransitive xenogeneic interactions between four common Red Sea sessile invertebrates. Proc 7th Int Coral Reef Symp Guam 1993; 2:833–839.

    Google Scholar 

  11. Rinkevich B, Frank U, Bak RPM et al. Alloimmune responses between Acropora hemprichi conspecifics: nontransitive patterns of overgrowth and delayed cytotoxicity. Mar Biol 1994; 118:731–737.

    Article  Google Scholar 

  12. Olano CT, Bigger CH. Phagocytic activities of the gorgonian coral Swiftia exserta. J Invertebr Pathol 2000; 76:176–184.

    Article  PubMed  CAS  Google Scholar 

  13. Peach MB, Hoegh-Guldberg O. Sweeper polyps of the coral Goniopora tenuidens (Scleractinia: Poritidae). Invertebr Biol 1999; 118:1–7.

    Article  Google Scholar 

  14. Koh EGL. Do scleractinian corals engage in chemical warfare against microbes? J Chem Ecol 1997; 23:379–398.

    Article  CAS  Google Scholar 

  15. Jokiel PL, Bigger CH. Aspects of histocompatibility and regeneration in the solitary reef coral Fungia scutaria. Biol Bull 1994; 186:72–80.

    Article  PubMed  CAS  Google Scholar 

  16. Abelson A, Loya Y. Interspecific aggression among stony corals in Eilat, Red Sea: a hierarchy of aggression ability and related parameters. Bull Mar Sci 1999; 65:851–860.

    Google Scholar 

  17. Aerts LAM. Dynamics behind standoff interactions in three reef sponge species and the coral Montastraea cavernosa. P.S.Z.N. Mar Ecol 2000; 21:191–204.

    Article  Google Scholar 

  18. Alino PM, Sammarco PW, Coll GC. Competitive strategies in soft corals (Coelenterata, Octocorallia). IV. Environmentally induced reversals in competitive superiority. Mar Ecol Prog Ser 1992; 81:129–145.

    Article  Google Scholar 

  19. Bak RPM, Termaat RM, Dekker R. Complexity of coral interactions: influence of time, location of interaction and epifauna. Mar Biol 1982; 69:215–222.

    Article  Google Scholar 

  20. Bigger CH, Olano CT. Alloimmune cellular responses of the gorgonian coral Swiftia exserta. J Immunol 1993; 150:134A.

    Google Scholar 

  21. Bruno JF, Witman JD. Defense mechanisms of scleractinian cup corals against overgrowth by colonial invertebrates. J Exp Mar Biol Ecol 1996; 207:229–241.

    Article  Google Scholar 

  22. Chadwick-Furman NE, Rinkevich B. A complex allorecognition system in a reef building coral: delayed responses, reversals and nontransitive hierarchies. Coral Reefs 1994; 13:57–63.

    Article  Google Scholar 

  23. Ding JL, Fung FMY, Chou LB. Cytotoxic effects of mucus from coral Galaxea fascicularis. J Mar Biotechnol 1994; 2:27–33.

    Google Scholar 

  24. Griffith JK. Occurrence of aggressive mechanisms during interactions between soft corals (Octocorallia: Alcyoniidae) and other corals on the Great Barrier Reef, Australia. Mar Freshw Res 1997; 48:129–135.

    Article  Google Scholar 

  25. Frank U, Rinkevich R. Nontransitive patterns of historecognition phenomena in the Red Sea hydrocoral Millepora dichotoma. Mar Biol 1994; 118:723–729.

    Article  Google Scholar 

  26. Frank U, Rinkevich B. Alloimmune memory is absent in the Red Sea hydrocoral Millepora dichtoma. J Exp Zool 2001; 291:25–29.

    Article  PubMed  CAS  Google Scholar 

  27. Frank U, Bak RPM, Rinkevich B. Allorecognition responses in the soft coral Parerythropodium fulvum fulvum from the Red Sea. J Exp Mar Biol Ecol 1996; 197:191–201.

    Article  Google Scholar 

  28. Frank U, Oren O, Loya Y et al. Alloimmune maturation in the coral Stylophora pistillata is achieved through three distinctive stages, four months post metamorphosis. Proc R Soc Lond B 1997; 264:99–104.

    Article  Google Scholar 

  29. Frank U, Brickner I, Rinkevich B et al. Allogeneic and xenogeneic interactions in reef-building corals may induce tissue growth without calcification. Mar Ecol Prog Ser 1995; 24:181–188.

    Article  Google Scholar 

  30. Hidaka M, Yurugi K, Sunagawa S et al. Contact reactions between young colonies of the coral Pocillopora damicornis. Coral Reefs 1997; 16:13–20.

    Article  Google Scholar 

  31. Kvell K, Cooper EL, Engelmann P et al. Blurring borders: Innate immunity with adaptive features. Clin and Dev Immunol 2007; doi:10.1155/2007/83671.

    Google Scholar 

  32. Rast JP, Messier-Solek C. Marine invertebrate genome sequences and our evolving understanding of animal immunity. Biol Bull 2008; 214:274–283.

    Article  PubMed  CAS  Google Scholar 

  33. Miller DJ, Hemmrich G, Ball EE et al. The innate immune repertoire in Cnidaria—ancestral complexity and stochastic gene loss. Genome Biol 2007; 8:R59 (doi:10.1186/gb-2007-8-4-r59).

    Article  PubMed  Google Scholar 

  34. Sunagawa S, DeSalvo MK, Voolstra CR et al. Identification and gene expression analysis of a taxonomically restricted cysteine-rich protein family in reef-building corals. PLoS ONE 2009; 4:e4865. doi:10.1371/ journal.pone.0004865.

    Article  PubMed  Google Scholar 

  35. Hibino TM, Loza-Coll M, Messier C et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 2006; 300:349–365.

    Article  PubMed  CAS  Google Scholar 

  36. Hughes AL. Natural selection and the diversi?cation of vertebrate immune effectors. Immunol Rev 2002; 190:161–168.

    Article  PubMed  CAS  Google Scholar 

  37. Frank U, Leitz T, Müller WEG. The hydroid Hydractinia: a versatile, informative cnidarian representative. BioEssays 2001; 23:963-971.

    Google Scholar 

  38. Neigel JE. Recognition of self or nonself? Theoretical implications and empirical test. In: Grosberg RK, Hedgecock D, Nelson K, eds. Invertebrate Historecognition, New York: Plenum Press 1988; 127–142.

    Chapter  Google Scholar 

  39. Neigel JE, Avise JC. Clonal diversity and population structure in a reef-building coral, Acropora cervicornis: self recognition analysis and demographic interpretation. Evolution 1983; 37:437–453.

    Article  Google Scholar 

  40. Tanner JE. Experimental analysis of digestive hierarchies in coral assemblages. Proc 7th Int Coral Reef Symp Guam 1993; 1:569–574.

    Google Scholar 

  41. Genin A, Karp L, Miroz A. Effects of flow on competitive superiority in scleractinian corals. Limnol Oceanogr 1994; 39:913–924.

    Article  Google Scholar 

  42. Alino PM, Sammarco PW, Coll JC. Competitive strategies in soft corals (Coelenterata, Octocorallia). IV. Environmentally induced reversals in competitive superiority. Mar Ecol Prog Ser 1992; 81:129–145.

    Article  Google Scholar 

  43. Van Veghel MLJ, Cleary DFR, Bak RPM. Interspecific interactions and competitive ability of the polymorphic reef-building coral Montastrea annularis. Bull Mar Sci 1996; 58:792–803.

    Google Scholar 

  44. Frank U, Bak RPM, Rinkevich B. Allorecognition responses in the soft coral Parerythropodium fulvum fulvum from the Red Sea. J Exp Mar Biol Ecol 1996; 197:191–201.

    Article  Google Scholar 

  45. Nicotra ML, Powell AE, Rosengarten RD et al. Hypervariable invertebrate allodeterminant. Curr Biol 2009; 19:583–589.

    Article  PubMed  CAS  Google Scholar 

  46. Kurtz J. Memory in the innate and adaptive immune systems. Microbes Infect 2004; 6:1410–1417.

    Article  PubMed  Google Scholar 

  47. Brehélin M, Roch P. Specificity, learning and memory in the innate immune response. Invertebr Surviv J 2008; 5:103–109

    Google Scholar 

  48. Hildemann WH, Bigger CH, Johnston IS. Histoincompatibility reactions and allogeneic polymorphism among invertebrates. Transplant Proc 1979; 11:1136–1141.

    PubMed  CAS  Google Scholar 

  49. Salter-Cid L, Bigger CH. Alloimmunity in the gorgonian coral Swiftia excerta. Biol Bull 1991; 181:127–134.

    Article  Google Scholar 

  50. Sauer KP, Muller M, Weber M. Alloimmune memory for glycoprotein recognition molecules in sea anemones competing for space. Mar Biol 1986; 92:73–79.

    Article  CAS  Google Scholar 

  51. Kurtz J, Franz K. Innate defence: evidence for memory in invertebrate immunity. Nature 2003; 425:37–38.

    Article  PubMed  CAS  Google Scholar 

  52. Little TJ, O’Connor B, Colegrave N et al. Maternal transfer of strain-specific immunity in an invertebrate. Curr Biol 2003; 13:489–492.

    Article  PubMed  CAS  Google Scholar 

  53. Hellberg ME, Taylor MS. Genetic analysis of sexual reproduction in the dendrophylliid coral Balanophyllia elegans. Mar Biol 2002; 141:629–637.

    Article  CAS  Google Scholar 

  54. Hidaka M. Tissue compatibility between colonies and between newly settled larvae of Pocillopora damicornis. Coral Reefs 1985; 4:111–114.

    Article  Google Scholar 

  55. Amar KO, Rinkevich B. Mounting of erratic histoincompatible responses in hermatypic corals: a multi-years interval comparison. J Exp Biol 2009 in press.

    Google Scholar 

  56. Barki Y, Gateňo D, Graur D et al. Soft-coral natural chimerism: a window in ontogeny allows the creation of entities comprised of incongruous parts. Mar Ecol Prog Ser 2002; 231:91–99.

    Article  Google Scholar 

  57. Shenk MA, Buss LW. Ontogenetic changes in fusibility in the colonial hydroid Hydractinia sumbiolongicarpus. J Exp Zool 1991; 257:549–557.

    Article  Google Scholar 

  58. Lange RG, Dick MH, Muller WA. Specificity and early ontogeny of historecognition in the hydroid Hydractinia. J Exp Zool 1992; 262:307–316.

    Article  Google Scholar 

  59. Bavestrello G, Cerrano C. Aggregate colonies in Eudendrium glomeratum Picard 1952 (Cnidaria, Hydrozoa, Anthomedusae). Sci Mar 1992; 56:333–335.

    Google Scholar 

  60. Cadavid LF, Powell AE, Nicotra ML et al. An invertebrate histocompatibility complex. Genetics 2004; 167:357–365.

    Article  PubMed  CAS  Google Scholar 

  61. Nozawa Y, Loya Y. Genetic relationship and maturity state of the allorecognition system affect contact reactions in juvenile Seriatopora corals. Mar Ecol Prog Ser 2005; 286:115–123.

    Article  Google Scholar 

  62. Rinkevich B, Weissman IL. Chimeras in colonial invertebrates: a synergistic symbiosis or somatic-and germ-cell parasitism? Symbiosis 1987; 4:117–134.

    Google Scholar 

  63. Rinkevich B. Natural chimerism in colonial urochordates. J Exp Mar Biol Ecol 2005; 322:93–109.

    Article  Google Scholar 

  64. Amar KO, Chadwick NE, Rinkevich B. Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol Biol 2008; 8:126–136.

    Article  PubMed  Google Scholar 

  65. Rinkevich B. Will two walk together, except they have agreed? J Evol Biol 2004; 17:1178–1179.

    Article  PubMed  CAS  Google Scholar 

  66. Rinkevich B. Immunology of human implantation: from the invertebrates’ point of view. Human Reprod 1998; 13:455–459.

    Article  CAS  Google Scholar 

  67. Rinkevich B. Human natural chimerism: An acquired character or a vestige of evolution? Human Immunol 2001; 62:651–657.

    Article  CAS  Google Scholar 

  68. Pancer Z, Gershon H, Rinkevich B. Coexistence and possible parasitism of somatic and germ cell lines in chimeras of the colonial urochordate Botryllus schlosseri. Biol Bull 1995; 189:106–112.

    Article  Google Scholar 

  69. Paz G, Rinkevich B. Morphological consequences for multi-partner chimerism in Botrylloides, a colonial urochordate. Dev Comp Immunol 2002; 26:615–622.

    Article  PubMed  Google Scholar 

  70. Rinkevich B. Characteristics of allogeneic resorption in Botrylloides from the Mediterranean coast of Israel. Dev Comp Immunol 1995; 19:21–29.

    Article  PubMed  CAS  Google Scholar 

  71. Rinkevich B. Bi—vs. multi-chimerism in colonial urochordates: a hypothesis for links between natural tissue transplantation, allogenetics and evolutionary ecology. Exp Clin Immunogenet 1996; 13:61–69.

    PubMed  CAS  Google Scholar 

  72. Rinkevich B, Yankelevich I. Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. J Exp Biol 2004; 207:3531–3536.

    Article  PubMed  Google Scholar 

  73. Sabbadin A, Astorri C, Chimeras and histocompatibility in the colonial ascidian Botryllus schlosseri. Dev Comp Immunol 1998; 12:737–747.

    Article  Google Scholar 

  74. Stoner DS, Rinkevich B, Weissman IL. Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc Natl Acad Sci USA 1999; 96:9148–9153.

    Article  PubMed  CAS  Google Scholar 

  75. Puill-Stephan E, Willis BL, van Herwerden L et al. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef. PLoS ONE 2009; 4:e7751. doi:10.1371/ journal.pone.0007751.

    Article  PubMed  Google Scholar 

  76. Raymundo LJ, Maypa AP. Getting bigger faster: Mediation of size-specific mortality via fusion in juvenile coral transplants. Ecol Appl 2004; 14:281–295.

    Article  Google Scholar 

  77. Cadavid LF, Powell AE, Nicotra ML et al. An invertebrate histocompatibility complex. Genetics 2004; 167:357–365.

    Article  PubMed  CAS  Google Scholar 

  78. Gild S, Frank U, Mokady O. Allogeneic interactions in Hydractinia: is the transitory chimera beneficial? Int J Dev Biol 2003; 47:433–438.

    PubMed  Google Scholar 

  79. Grosberg RK, Quinn JF. The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature 1986; 322:456–459.

    Article  Google Scholar 

  80. Rinkevich B, Shapira M. Multi-partner urochordate chimeras outperform two-partner chimerical entities. Oikos 1999; 87:315–320.

    Article  Google Scholar 

  81. Buss LW. Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA 1993; 79:5337–5341.

    Article  Google Scholar 

  82. Boschma H. On the post larval development of the coral Maeandra aerolata (L.). fap. Tortugas Lab., Carnegie Inst. Washington 1929; 26:131–147.

    Google Scholar 

  83. Duerden JE. Aggregated colonies in Madreporarian corais. Am Nat 1902; 36:461–471.

    Article  Google Scholar 

  84. Buss LW, Shenk AM. Hydroid allorecognition regulates competition at both the level of the colony and at the level of the cell lineage. In: Marchalonis JJ, Reinish C, eds. Defense Molecules. New York: A.R. Liss Press 1990; 85–106.

    Google Scholar 

  85. Schwarz RS, Hodes-Villamar L, Fitzpatrick KA et al. A gene family of putative immune recognition molecules in the hydroid Hydractinia. Immunogenetics 2007; 59:233–46.

    Article  PubMed  CAS  Google Scholar 

  86. Mydlarz LD, Holthouse SF, Peters EC et al. Cellular responses in sea fan corals: Granular amoebocytes react to pathogen and climate stressors. PLoS ONE 2008; 3:e1811. doi:10.1371/journal.pone.0001811.

    Article  PubMed  Google Scholar 

  87. Palmer CV, Mydlarz LD, Willis BL. Evidence of an inflammatory-like response in nonnormally pigmented tissues of two scleractinian corals. Proc R Soc 2008; B275:2687–2693.

    Google Scholar 

  88. Grosberg RK. The evolution of allorecognition specificity in clonal invertebrates. Q Rev Biol 1988; 63:377–412.

    Article  Google Scholar 

  89. Kvennefors ECE, Leggat W, Hoegh-Guldberg O et al. An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol 2008; 32:1582–1592.

    Article  PubMed  CAS  Google Scholar 

  90. Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 2006; 322:1–14.

    Article  CAS  Google Scholar 

  91. Ovchinnikova TV, Baladin SV, Aleshina GM et al. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Comm 2006; 348:514–523.

    Article  PubMed  CAS  Google Scholar 

  92. Loker ES, Adema CM, Zhang SM et al. Invertebrate immune systems—not homogeneous, not simple, not well understood. Immunol Rev 2004; 198:10–24.

    Article  PubMed  Google Scholar 

  93. Kortschak RD, Samuel G, Saint R et al. EST analysis of the cnidarian, Acropora millepora, reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 2003; 13:2190–2195.

    Article  PubMed  CAS  Google Scholar 

  94. Technau U, Rudd S, Maxwel LP et al. Maintenance of ancestral complexity and nonmetazoan genes in two basal cnidarians. Trends Genet 2005; 21:633–639.

    Article  PubMed  CAS  Google Scholar 

  95. Dishaw LJ, Smith SL, Bigger CH. Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics 2005; 57:535–548.

    Article  PubMed  CAS  Google Scholar 

  96. Rodriguez-Lanetty M, Phillips WS, Weis VM. Transcriptome analysis of a cnidarian-dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Gen 2006; 7:23.

    Article  Google Scholar 

  97. Couch CS, Mydlarz LD, Harvell CD et al. Variation in measures of immunocompetence of sea fan coral, Gorgonia ventalina, in the Florida Keys. Mar Biol 2008; 155:281–292.

    Article  CAS  Google Scholar 

  98. Mydlarz LD, Jones LE, Harvell CD. Innate immunity, environmental drivers and disease ecology of marine and freshwateRinvertebrates. Annu Rev Ecol Evol Syst 2006; 37:251–288.

    Article  Google Scholar 

  99. Iwanaga S, Lee BL. Recent advances in the innate immunity of invertebrate animals. J Bioch Mol Biol 2005; 38:128–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Rinkevich, B. (2012). Neglected Biological Features in Cnidarians Self-Nonself Recognition. In: López-Larrea, C. (eds) Self and Nonself. Advances in Experimental Medicine and Biology, vol 738. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1680-7_4

Download citation

Publish with us

Policies and ethics