Skip to main content

Toll-Like Receptor Function and Evolution in Primates

  • Chapter
  • First Online:
Primates, Pathogens, and Evolution

Abstract

Toll-like receptors (TLRs) are an important interface between vertebrate hosts and pathogens. From an evolutionary standpoint, these germline encoded receptors and their associated signaling pathways are interesting because they provide a window through which we can examine the relationships between primate environments, genomes, and immune responses. TLRs are key in host recognition of nonself and the activation of the innate immune response, a major determinant of host infection susceptibility and disease progression. TLR-initiated cell signaling not only forms an important part of host’s first line of defense against immune insult but also modulates adaptive immune responses. The efficacy of TLR-triggered immune responses has profound effects on host survival, with both overt and weak responses linked to host death. Despite sharing high genomic identity, primate species often manifest TLR-detected infectious pathogens differently (e.g., immunodeficiency viruses, Trypanosoma brucei, and Gram-negative bacteria). These differences suggest that primate TLR-triggered responses have diverged over time. In this chapter we review what is currently known about Toll-like receptor function and evolution in primates and discuss how studying the evolution of TLR-triggered immune responses may help explain disparities observed in microorganism-induced primate disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Kagei N, Teramura Y, Ejima H (1993) Hepatocellular carcinoma associated with chronic Schistosoma mansoni infection in a chimpanzee. J Med Primatol 22(4):237–239

    CAS  PubMed  Google Scholar 

  • Agnese DM, Calvano JE, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, Lowry SF (2002) Human Toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 186(10):1522–1525

    CAS  PubMed  Google Scholar 

  • Alcaide M, Edwards SV (2011) Molecular evolution of the Toll-like receptor multigene family in birds. Mol Biol Evol 28(5):1703–1715

    CAS  PubMed  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738

    CAS  PubMed  Google Scholar 

  • Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285(5428):736–739

    CAS  PubMed  Google Scholar 

  • Allikmets R, Buchbinder SP, Carrington M, Dean M, Detels R, Donfield S, Goedert JJ, Gomperts E, Huttley GA, Kaslow R et al (1996) Genetic restrictions of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–1862

    PubMed  Google Scholar 

  • Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25(2):187–191

    CAS  PubMed  Google Scholar 

  • Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol 11:368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arko RJ (1989) Animal models for pathogenic Neisseria species. Clin Microbiol Rev 2(Suppl):S56–59

    PubMed Central  PubMed  Google Scholar 

  • Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT, Sher A (2006) Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol 177(6):3515–3519

    CAS  PubMed  Google Scholar 

  • Barber RC, Chang LY, Arnoldo BD, Purdue GF, Hunt JL, Horton JW, Aragaki CC (2006) Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin Med Res 4(4):250–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barreiro LB, Quintana-Murci L (2010) From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 11(1):17–30

    CAS  PubMed  Google Scholar 

  • Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M, Neyrolles O, Gicquel B et al (2009) Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 5(7):e1000562

    PubMed Central  PubMed  Google Scholar 

  • Barreiro LB, Marioni JC, Blekhman R, Stephens M, Gilad Y (2010) Functional comparison of innate immune signaling pathways in primates. PLoS Genet 6(12):e1001249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barrett RD, Hoekstra HE (2011) Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 12(11):767–780

    CAS  PubMed  Google Scholar 

  • Ben-Ali M, Corre B, Manry J, Barreiro LB, Quach H, Boniotto M, Pellegrini S, Quintana-Murci L (2011) Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum Mutat 32(6):643–652

    CAS  PubMed  Google Scholar 

  • Benveniste RE, Arthur LO, Tsai CC, Sowder R, Copeland TD, Henderson LE, Oroszlan S (1986) Isolation of a lentivirus from a macaque with lymphoma: comparison with HTLV-III/LAV and other lentiviruses. J Virol 60(2):483–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bettauer RH (2010) Chimpanzees in hepatitis C virus research: 1998–2007. J Med Primatol 39(1):9–23

    CAS  PubMed  Google Scholar 

  • Biraben JN (1975) Les hommes et la peste en France et dans les pays europĂ©ens et mĂ©diterranĂ©ens. Mouton, Paris

    Google Scholar 

  • Blackwell TS, Christman JW (1996) Sepsis and cytokines: current status. Br J Anaesth 77(1): 110–117

    CAS  PubMed  Google Scholar 

  • Bochud P-Y, Hersberger M, Taffe P, Bochud M, Stein CM, Rodrigues SD, Calandra T, Francioli P, Telenti A, Speck RF et al (2007) Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS 21(4):441–446, 410.1097/QAD.1090b1013e328012b328018ac

    CAS  PubMed  Google Scholar 

  • Bochud PY, Hawn TR, Siddiqui MR, Saunderson P, Britton S, Abraham I, Argaw AT, Janer M, Zhao LP, Kaplan G et al (2008) Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis 197(2):253–261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bosinger SE, Sodora DL, Silvestri G (2011) Generalized immune activation and innate immune responses in simian immunodeficiency virus infection. Curr Opin HIV AIDS 6(5):411–418

    PubMed Central  PubMed  Google Scholar 

  • Bouer A, Werther K, Machado RZ, Nakaghi AC, Epiphanio S, Catao-Dias JL (2010) Detection of anti-Toxoplasma gondii antibodies in experimentally and naturally infected non-human primates by Indirect Fluorescence Assay (IFA) and indirect ELISA. Rev Bras Parasitol Vet 19(1):26–31

    PubMed  Google Scholar 

  • Brinkworth J, Pechenkina E, Silver J, Goyert S (2012) Innate immune responses to TLR2 and TLR4 agonists differ between baboons, chimpanzees and humans. J Med Primatol 41:388–393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown WJ, Lucas CT, Kuhn US (1972) Gonorrhoea in the chimpanzee. Infection with laboratory-passed gonococci and by natural transmission. Br J Vener Dis 48(3):177–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bulut Y, Faure E, Thomas L, Equils O, Arditi M (2001) Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 167(2):987–994

    CAS  PubMed  Google Scholar 

  • Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung G, Brock R, Akira S, Ulmer AJ (2005) Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35(1):282–289

    CAS  PubMed  Google Scholar 

  • Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO, Travassos LR, Smith JA, Golenbock DT, Gazzinelli RT (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 167(1):416–423

    CAS  PubMed  Google Scholar 

  • CatĂ£o-Dias JL, Epiphanio S, Martins Kierulff MC (2013) Neotropical primates and their susceptibility to Toxoplasma gondii: new insights for an old problem. In: Brinkworth JF, Pechenkina E (eds) Primates, pathogens, and evolution. Springer, Heidelberg

    Google Scholar 

  • Cerf-Bensussan N, Gaboriau-Routhiau V (2010) The immune system and the gut microbiota: friends or foes? Nat Rev Immunol 10(10):735–744

    CAS  PubMed  Google Scholar 

  • Dabbagh K, Dahl ME, Stepick-Biek P, Lewis DB (2002) Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J Immunol 168(9):4524–4530

    CAS  PubMed  Google Scholar 

  • Daniel MD, King NW, Letvin NL, Hunt RD, Sehgal PK, Desrosiers RC (1984) A new type D retrovirus isolated from macaques with an immunodeficiency syndrome. Science 223(4636):602–605

    CAS  PubMed  Google Scholar 

  • De Vos R, Verslype C, Depla E, Fevery J, Van Damme B, Desmet V, Roskams T (2002) Ultrastructural visualization of hepatitis C virus components in human and primate liver biopsies. J Hepatol 37(3):370–379

    PubMed  Google Scholar 

  • Dean AM, Thornton JW (2007) Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet 8(9):675–688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E et al (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273(5283):1856–1862

    CAS  PubMed  Google Scholar 

  • Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende MG, Mansur DS, Weingart R, Schmidt RR, Golenbock DT et al (2007) Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. J Immunol 179(2):1129–1137

    CAS  PubMed  Google Scholar 

  • Delport W, Poon AF, Frost SD, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26(19):2455–2457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663):1529–1531

    CAS  PubMed  Google Scholar 

  • Elvin SJ, Williamson ED, Scott JC, Smith JN, Perez De Lema G, Chilla S, Clapham P, Pfeffer K, Schlondorff D, Luckow B (2004) Evolutionary genetics: ambiguous role of CCR5 in Y. pestis infection. Nature 430(6998):417

    CAS  PubMed  Google Scholar 

  • Epiphanio S, Sinhorini IL, Catao-Dias JL (2003) Pathology of toxoplasmosis in captive new world primates. J Comp Pathol 129(2–3):196–204

    CAS  PubMed  Google Scholar 

  • Esposito S, Molteni CG, Zampiero A, Baggi E, Lavizzari A, Semino M, Daleno C, Groppo M, Scala A, Terranova L et al (2012) Role of polymorphisms of Toll-like receptor (TLR) 4, TLR9, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A genes in malaria susceptibility and severity in Burundian children. Malar J 11:196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Estep RD, Messaoudi I, Wong SW (2010) Simian herpesviruses and their risk to humans. Vaccine 28(Suppl 2):B78–84

    CAS  PubMed  Google Scholar 

  • Etienne L, Nerrienet E, LeBreton M, Bibila GT, Foupouapouognigni Y, Rousset D, Nana A, Djoko CF, Tamoufe U, Aghokeng AF et al (2011) Characterization of a new simian immunodeficiency virus strain in a naturally infected Pan troglodytes troglodytes chimpanzee with AIDS related symptoms. Retrovirology 8:4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farah IO, Mola PW, Kariuki TM, Nyindo M, Blanton RE, King CL (2000) Repeated exposure induces periportal fibrosis in Schistosoma mansoni-infected baboons: role of TGF-beta and IL-4. J Immunol 164(10):5337–5343

    CAS  PubMed  Google Scholar 

  • Farah IO, Kariuki TM, King CL, Hau J (2001) An overview of animal models in experimental schistosomiasis and refinements in the use of non-human primates. Lab Anim 35(3):205–212

    CAS  PubMed  Google Scholar 

  • Ferrer-Admetlla A, Bosch E, Sikora M, Marques-Bonet T, Ramirez-Soriano A, Muntasell A, Navarro A, Lazarus R, Calafell F, Bertranpetit J et al (2008) Balancing selection is the main force shaping the evolution of innate immunity genes. J Immunol 181(2):1315–1322

    CAS  PubMed  Google Scholar 

  • Ferwerda B, McCall MB, Verheijen K, Kullberg BJ, van der Ven AJ, Van der Meer JW, Netea MG (2008) Functional consequences of Toll-like receptor 4 polymorphisms. Mol Med 14(5–6): 346–352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feterowski C, Emmanuilidis K, Miethke T, Gerauer K, Rump M, Ulm K, Holzmann B, Weighardt H (2003) Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology 109(3):426–431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer E, Marano MA, Barber AE, Hudson A, Lee K, Rock CS, Hawes AS, Thompson RC, Hayes TJ, Anderson TD et al (1991) Comparison between effects of interleukin-1 alpha administration and sublethal endotoxemia in primates. Am J Physiol 261(2 Pt 2):R442–452

    CAS  PubMed  Google Scholar 

  • Flynn JL, Capuano SV, Croix D, Pawar S, Myers A, Zinovik A, Klein E (2003) Non-human primates: a model for tuberculosis research. Tuberculosis (Edinb) 83(1–3):116–118

    CAS  Google Scholar 

  • Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R (2011) Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet 7(11):e1002355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50:505–528

    CAS  PubMed  Google Scholar 

  • Galvani AP, Slatkin M (2003) Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. Proc Natl Acad Sci USA 100(25):15276–15279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia MA, Yee J, Bouley DM, Moorhead R, Lerche NW (2004) Diagnosis of tuberculosis in macaques, using whole-blood in vitro interferon-gamma (PRIMAGAM) testing. Comp Med 54(1):86–92

    CAS  PubMed  Google Scholar 

  • Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP (2004) Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci USA 101(12):4186–4191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gottfried R (1983) The black death: natural and human disaster in medieval Europe. Free Press, New York, p 203

    Google Scholar 

  • Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, Supply P, Vincent V (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1):e5

    PubMed Central  PubMed  Google Scholar 

  • Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston DA, Hurst D, Achtman M et al (2010) Distinct clones of Yersinia pestis caused the black death. PLoS Pathog 6(10):e1001134

    PubMed Central  PubMed  Google Scholar 

  • Hagberg L, Hull R, Hull S, McGhee JR, Michalek SM, Svanborg EC (1984) Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun 46(3):839–844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haudek SB, Natmessnig BE, Furst W, Bahrami S, Schlag G, Redl H (2003) Lipopolysaccharide dose response in baboons. Shock 20(5):431–436

    CAS  PubMed  Google Scholar 

  • Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A et al (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198(10):1563–1572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawn TR, Verbon A, Janer M, Zhao LP, Beutler B, Aderem A (2005) Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc Natl Acad Sci USA 102(7):2487–2489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawn TR, Misch EA, Dunstan SJ, Thwaites GE, Lan NT, Quy HT, Chau TT, Rodrigues S, Nachman A, Janer M et al (2007) A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol 37(8):2280–2289

    CAS  PubMed  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832):1099–1103

    CAS  PubMed  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303(5663):1526–1529

    CAS  PubMed  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3(2):196–200

    CAS  PubMed  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162(7):3749–3752

    CAS  PubMed  Google Scholar 

  • Jallow M, Teo YY, Small KS, Rockett KA, Deloukas P, Clark TG, Kivinen K, Bojang KA, Conway DJ, Pinder M et al (2009) Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat Genet 41(6):657–665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    CAS  PubMed  Google Scholar 

  • Jin MS, Lee J-O (2008) Structures of the Toll-like receptor family and its ligand complexes. Immunity 29(2):182–191

    CAS  PubMed  Google Scholar 

  • Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, Hamann L, Schumann RR, Tapping RI (2007) Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol 178(12):7520–7524

    CAS  PubMed  Google Scholar 

  • Kang TJ, Lee SB, Chae GT (2002) A polymorphism in the Toll-like receptor 2 is associated with IL-12 production from monocyte in lepromatous leprosy. Cytokine 20(2):56–62

    CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19(1):24–32

    CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    CAS  PubMed  Google Scholar 

  • Keele BF, Jones JH, Terio KA, Estes JD, Rudicell RS, Wilson ML, Li Y, Learn GH, Beasley TM, Schumacher-Stankey J et al (2009) Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460(7254):515–519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krieg AM (2007) Antiinfective applications of Toll-like receptor 9 agonists. Proc Am Thorac Soc 4(3):289–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar H, Kawai T, Akira S (2009) Pathogen recognition in the innate immune response. Biochem J 420(1):1–16

    CAS  PubMed  Google Scholar 

  • Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ et al (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1(5):398–401

    CAS  PubMed  Google Scholar 

  • Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 101(5):1315–1320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langermans JA, Andersen P, van Soolingen D, Vervenne RA, Frost PA, van der Laan T, van Pinxteren LA, van den Hombergh J, Kroon S, Peekel I et al (2001) Divergent effect of bacillus Calmette-Guerin (BCG) vaccination on Mycobacterium tuberculosis infection in highly related macaque species: implications for primate models in tuberculosis vaccine research. Proc Natl Acad Sci USA 98(20):11497–11502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162(9):1028–1032

    CAS  PubMed  Google Scholar 

  • Lucas CT, Chandler F Jr, Martin JE Jr, Schmale JD (1971) Transfer of gonococcal urethritis from man to chimpanzee. An animal model for gonorrhea. JAMA 216(10):1612–1614

    CAS  PubMed  Google Scholar 

  • Lucotte G (2001) Distribution of the CCR5 gene 32-basepair deletion in West Europe. A hypothesis about the possible dispersion of the mutation by the Vikings in historical times. Hum Immunol 62(9):933–936

    CAS  PubMed  Google Scholar 

  • Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101(15):5598–5603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM (2007a) Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One 2(12):e1318

    PubMed Central  PubMed  Google Scholar 

  • Ma Y, Haynes RL, Sidman RL, Vartanian T (2007b) TLR8: an innate immune receptor in brain, neurons and axons. Cell Cycle 6(23):2859–2868

    CAS  PubMed  Google Scholar 

  • Major ME, Dahari H, Mihalik K, Puig M, Rice CM, Neumann AU, Feinstone SM (2004) Hepatitis C virus kinetics and host responses associated with disease and outcome of infection in chimpanzees. Hepatology 39(6):1709–1720

    PubMed  Google Scholar 

  • Mandl JN, Barry AP, Vanderford TH, Kozyr N, Chavan R, Klucking S, Barrat FJ, Coffman RL, Staprans SI, Feinberg MB (2008) Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med 14(10):1077–1087

    CAS  PubMed  Google Scholar 

  • Mandl JN, Akondy R, Lawson B, Kozyr N, Staprans SI, Ahmed R, Feinberg MB (2011) Distinctive TLR7 signaling, type I IFN production, and attenuated innate and adaptive immune responses to yellow fever virus in a primate reservoir host. J Immunol 186(11):6406–6416

    CAS  PubMed  Google Scholar 

  • Martin R (2003) Earth history, disease, and the evolution of primates. In: Greenblatt C, Spigelmann M (eds) Emerging pathogens: archaeology, ecology and evolution of infectious disease. Oxford University Press, New York

    Google Scholar 

  • Massari P, Henneke P, Ho Y, Latz E, Golenbock DT, Wetzler LM (2002) Cutting edge: immune stimulation by neisserial porins is Toll-like receptor 2 and MyD88 dependent. J Immunol 168(4):1533–1537

    CAS  PubMed  Google Scholar 

  • Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate Toll-like receptors. BMC Genomics 8:124

    PubMed Central  PubMed  Google Scholar 

  • Matsuura M, Takahashi H, Watanabe H, Saito S, Kawahara K (2010) Immunomodulatory effects of Yersinia pestis lipopolysaccharides on human macrophages. Clin Vaccine Immunol 17(1):49–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGee ZA, Stephens DS, Hoffman LH, Schlech WF 3rd, Horn RG (1983) Mechanisms of mucosal invasion by pathogenic Neisseria. Rev Infect Dis 5(Suppl 4):S708–714

    PubMed  Google Scholar 

  • McGee ZA, Gregg CR, Johnson AP, Kalter SS, Taylor-Robinson D (1990) The evolutionary watershed of susceptibility to gonococcal infection. Microb Pathog 9(2):131–139

    CAS  PubMed  Google Scholar 

  • Means TK, Jones BW, Schromm AB, Shurtleff BA, Smith JA, Keane J, Golenbock DT, Vogel SN, Fenton MJ (2001) Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J Immunol 166(6):4074–4082

    CAS  PubMed  Google Scholar 

  • Mecsas J, Franklin G, Kuziel WA, Brubaker RR, Falkow S, Mosier DE (2004) Evolutionary genetics: CCR5 mutation and plague protection. Nature 427(6975):606

    CAS  PubMed  Google Scholar 

  • Mir KD, Bosinger SE, Gasper M, Ho O, Else JG, Brenchley JM, Kelvin DJ, Silvestri G, Hu SL, Sodora DL (2012) Simian immunodeficiency virus-induced alterations in monocyte production of tumor necrosis factor alpha contribute to reduced immune activation in sooty mangabeys. J Virol 86(14):7605–7615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montali RJ, Mikota SK, Cheng LI (2001) Mycobacterium tuberculosis in zoo and wildlife species. Rev Sci Tech 20(1):291–303

    CAS  PubMed  Google Scholar 

  • Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y et al (2010) Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 42(12):1140–1143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee S, Sarkar-Roy N, Wagener DK, Majumder PP (2009) Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. Proc Natl Acad Sci USA 106(17):7073–7078

    PubMed Central  PubMed  Google Scholar 

  • Murdoch C, Finn A (2003) The role of chemokines in sepsis and septic shock. Contrib Microbiol 10:38–57

    CAS  PubMed  Google Scholar 

  • Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A (2008) Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics 60(12):727–735

    CAS  PubMed  Google Scholar 

  • Ngampasutadol J, Tran C, Gulati S, Blom AM, Jerse EA, Ram S, Rice PA (2008) Species-specificity of Neisseria gonorrhoeae infection: do human complement regulators contribute? Vaccine 26(Suppl 8):I62–66

    CAS  PubMed  Google Scholar 

  • Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ et al (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3(6):e170

    PubMed Central  PubMed  Google Scholar 

  • Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, Coskun M, Cilli A, Yegin O (2004) The Arg753GLn polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23(2):219–223

    CAS  PubMed  Google Scholar 

  • Oh DY, Taube S, Hamouda O, Kucherer C, Poggensee G, Jessen H, Eckert JK, Neumann K, Storek A, Pouliot M et al (2008) A functional Toll-like receptor 8 variant is associated with HIV disease restriction. J Infect Dis 198(5):701–709

    CAS  PubMed  Google Scholar 

  • Oh DY, Baumann K, Hamouda O, Eckert JK, Neumann K, Kucherer C, Bartmeyer B, Poggensee G, Oh N, Pruss A et al (2009) A frequent functional Toll-like receptor 7 polymorphism is associated with accelerated HIV-1 disease progression. AIDS 23(3):297–307

    CAS  PubMed  Google Scholar 

  • Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 164(2):558–561

    CAS  PubMed  Google Scholar 

  • Omueti KO, Mazur DJ, Thompson KS, Lyle EA, Tapping RI (2007) The polymorphism P315L of human Toll-like receptor 1 impairs innate immune sensing of microbial cell wall components. J Immunol 178(10):6387–6394

    CAS  PubMed  Google Scholar 

  • Onlamoon N, Noisakran S, Hsiao HM, Duncan A, Villinger F, Ansari AA, Perng GC (2010) Dengue virus-induced hemorrhage in a nonhuman primate model. Blood 115(9):1823–1834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orange JS, Geha RS (2003) Finding NEMO: genetic disorders of NF-[kappa]B activation. J Clin Invest 112(7):983–985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ortiz M, Kaessmann H, Zhang K, Bashirova A, Carrington M, Quintana-Murci L, Telenti A (2008) The evolutionary history of the CD209 (DC-SIGN) family in humans and non-human primates. Genes Immun 9(6):483–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 97(25): 13766–13771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227(1):221–233

    CAS  PubMed  Google Scholar 

  • Pandrea I, Apetrei C (2010) Where the wild things are: pathogenesis of SIV infection in African nonhuman primate hosts. Curr HIV/AIDS Rep 7(1):28–36

    PubMed Central  PubMed  Google Scholar 

  • Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195

    CAS  PubMed  Google Scholar 

  • Payne KS, Novak JJ, Jongsakul K, Imerbsin R, Apisitsaowapa Y, Pavlin JA, Hinds SB (2011) Mycobacterium tuberculosis infection in a closed colony of rhesus macaques (Macaca mulatta). J Am Assoc Lab Anim Sci 50(1):105–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plantinga TS, Ioana M, Alonso S, Izagirre N, Hervella M, Joosten LA, van der Meer JW, de la Rua C, Netea MG (2012) The evolutionary history of TLR4 polymorphisms in Europe. J Innate Immun 4(2):168–175

    CAS  PubMed  Google Scholar 

  • Pollitzer R (1951) Plague studies. 1. A summary of the history and survey of the present distribution of the disease. Bull World Health Organ 4(4):475–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088

    CAS  PubMed  Google Scholar 

  • Pond SL, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21(10):2531–2533

    CAS  PubMed  Google Scholar 

  • Puel A, Picard C, Ku CL, Smahi A, Casanova JL (2004) Inherited disorders of NF-kappaB-mediated immunity in man. Curr Opin Immunol 16(1):34–41

    CAS  PubMed  Google Scholar 

  • Quesniaux VJ, Nicolle DM, Torres D, Kremer L, Guerardel Y, Nigou J, Puzo G, Erard F, Ryffel B (2004) Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol 172(7):4425–4434

    CAS  PubMed  Google Scholar 

  • Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189(4):615–625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rayner JC, Liu W, Peeters M, Sharp PM, Hahn BH (2011) A plethora of Plasmodium species in wild apes: a source of human infection? Trends Parasitol 27(5):222–229

    PubMed Central  PubMed  Google Scholar 

  • Redl H, Bahrami S, Schlag G, Traber DL (1993) Clinical detection of LPS and animal models of endotoxemia. Immunobiology 187(3–5):330–345

    CAS  PubMed  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102(27):9577–9582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, Bauer S (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34(9):2541–2550

    CAS  PubMed  Google Scholar 

  • Sadun EH, von Lichtenberg F, Cheever AW, Erickson DG (1970) Schistosomiasis mansoni in the chimpanzee. The natural history of chronic infections after single and multiple exposures. Am J Trop Med Hyg 19(2):258–277

    CAS  PubMed  Google Scholar 

  • Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725

    CAS  PubMed  Google Scholar 

  • Sapolsky RM, Else JG (1987) Bovine tuberculosis in a wild baboon population: epidemiological aspects. J Med Primatol 16(4):229–235

    CAS  PubMed  Google Scholar 

  • Schott E, Witt H, Neumann K, Taube S, Oh DY, Schreier E, Vierich S, Puhl G, Bergk A, Halangk J et al (2007) A Toll-like receptor 7 single nucleotide polymorphism protects from advanced inflammation and fibrosis in male patients with chronic HCV-infection. J Hepatol 47(2):203–211

    CAS  PubMed  Google Scholar 

  • Schroder NW, Diterich I, Zinke A, Eckert J, Draing C, von Baehr V, Hassler D, Priem S, Hahn K, Michelsen KS et al (2005) Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol 175(4):2534–2540

    PubMed  Google Scholar 

  • Schuenemann VJ, Bos K, Dewitte S, Schmedes S, Jamieson J, Mittnik A, Forrest S, Coombes BK, Wood JW, Earn DJ et al (2011) From the cover: targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc Natl Acad Sci USA 108(38):E746–752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuring RP, Hamann L, Faber WR, Pahan D, Richardus JH, Schumann RR, Oskam L (2009) Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J Infect Dis 199(12):1816–1819

    CAS  PubMed  Google Scholar 

  • Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 274(25):17406–17409

    CAS  PubMed  Google Scholar 

  • Shi Q, Wang J, Wang XL, VandeBerg JL (2004) Comparative analysis of vascular endothelial cell activation by TNF-alpha and LPS in humans and baboons. Cell Biochem Biophys 40(3):289–303

    CAS  PubMed  Google Scholar 

  • Shi Q, Cox LA, Glenn J, Tejero ME, Hondara V, Vandeberg JL, Wang XL (2010) Molecular pathways mediating differential responses to lipopolysaccharide between human and baboon arterial endothelial cells. Clin Exp Pharmacol Physiol 37(2):178–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189(11):1777–1782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siddiqui RA, Krawczak M, Platzer M, Sauermann U (2011) Association of TLR7 variants with AIDS-like disease and AIDS vaccine efficacy in rhesus macaques. PLoS One 6(10):e25474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sing A, Rost D, Tvardovskaia N, Roggenkamp A, Wiedemann A, Kirschning CJ, Aepfelbacher M, Heesemann J (2002) Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med 196(8):1017–1024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stephens JC, Reich DE, Goldstein DB, Shin HD, Smith MW, Carrington M, Winkler C, Huttley GA, Allikmets R, Schriml L et al (1998) Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet 62(6):1507–1515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sterner KN, Weckle A, Chugani HT, Tarca AL, Sherwood CC, Hof PR, Kuzawa CW, Boddy AM, Abbas A, Raaum RL et al (2012) Dynamic gene expression in the human cerebral cortex distinguishes children from adults. PLoS One 7(5):e37714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tada H, Nemoto E, Shimauchi H, Watanabe T, Mikami T, Matsumoto T, Ohno N, Tamura H, Shibata K, Akashi S et al (2002) Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol 46(7):503–512

    CAS  PubMed  Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of Gram-negative and gram-positive bacterial cell wall components. Immunity 11(4):443–451

    CAS  PubMed  Google Scholar 

  • Tarara R, Suleman MA, Sapolsky R, Wabomba MJ, Else JG (1985) Tuberculosis in wild olive baboons, Papio cynocephalus anubis (Lesson), in Kenya. J Wildl Dis 21(2):137–140

    CAS  PubMed  Google Scholar 

  • Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of Hyaluronan activate dendritic cells via Toll-like receptor 4. J Exp Med 195(1):99–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomson M, Nascimbeni M, Havert MB, Major M, Gonzales S, Alter H, Feinstone SM, Murthy KK, Rehermann B, Liang TJ (2003) The clearance of hepatitis C virus infection in chimpanzees may not necessarily correlate with the appearance of acquired immunity. J Virol 77(2):862–870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Triantafilou M, Uddin A, Maher S, Charalambous N, Hamm TS, Alsumaiti A, Triantafilou K (2007) Anthrax toxin evades Toll-like receptor recognition, whereas its cell wall components trigger activation via TLR2/6 heterodimers. Cell Microbiol 9(12):2880–2892

    CAS  PubMed  Google Scholar 

  • Underhill DM, Ozinsky A, Smith KD, Aderem A (1999) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 96(25):14459–14463

    CAS  PubMed Central  PubMed  Google Scholar 

  • van der Kleij D, Latz E, Brouwers JF, Kruize YC, Schmitz M, Kurt-Jones EA, Espevik T, de Jong EC, Kapsenberg ML, Golenbock DT et al (2002) A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J Biol Chem 277(50):48122–48129

    PubMed  Google Scholar 

  • van der Poll T, Levi M, van Deventer SJ, ten Cate H, Haagmans BL, Biemond BJ, Buller HR, Hack CE, ten Cate JW (1994) Differential effects of anti-tumor necrosis factor monoclonal antibodies on systemic inflammatory responses in experimental endotoxemia in chimpanzees. Blood 83(2):446–451

    PubMed  Google Scholar 

  • Vasl J, Prohinar P, Gioannini TL, Weiss JP, Jerala R (2008) Functional activity of MD-2 polymorphic variant is significantly different in soluble and TLR4-bound forms: decreased endotoxin binding by G56R MD-2 and its rescue by TLR4 ectodomain. J Immunol 180(9):6107–6115

    CAS  PubMed  Google Scholar 

  • Vignal C, Guerardel Y, Kremer L, Masson M, Legrand D, Mazurier J, Elass E (2003) Lipomannans, but not lipoarabinomannans, purified from Mycobacterium chelonae and Mycobacterium kansasii induce TNF-alpha and IL-8 secretion by a CD14-Toll-like receptor 2-dependent mechanism. J Immunol 171(4):2014–2023

    CAS  PubMed  Google Scholar 

  • Vitone N, Altizer S, Nunn CL (2004) Body size, diet and sociality influence the species richness of parasitic worms in anthropoid primates. Evol Ecol Res 6:183–199

    Google Scholar 

  • Vodros D, Fenyo EM (2004) Primate models for human immunodeficiency virus infection. Evolution of receptor use during pathogenesis. Acta Microbiol Immunol Hung 51(1–2):1–29

    CAS  PubMed  Google Scholar 

  • von Bulow GU, Puren AJ, Savage N (1992) Interleukin-1 from baboon peripheral blood monocytes: altered response to endotoxin (lipopolysaccharide) and Staphylococcus aureus stimulation compared with human monocytes. Eur J Cell Biol 59(2):458–463

    Google Scholar 

  • Walker CM (1997) Comparative features of hepatitis C virus infection in humans and chimpanzees. Springer Semin Immunopathol 19(1):85–98

    CAS  PubMed  Google Scholar 

  • Walsh GP, Tan EV, Dela Cruz EC, Abalos RM, Villahermosa LG, Young LJ, Cellona RV, Nazareno JB, Horwitz MA (1996) The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med 2(4):430–436

    CAS  PubMed  Google Scholar 

  • Walsh DS, Dela Cruz EC, Abalos RM, Tan EV, Walsh GP, Portaels F, Meyers WM (2007) Clinical and histologic features of skin lesions in a cynomolgus monkey experimentally infected with mycobacterium ulcerans (Buruli ulcer) by intradermal inoculation. Am J Trop Med Hyg 76(1):132–134

    PubMed  Google Scholar 

  • Werner H, Janitschke K, Kohler H (1969) Observations on marmoset monkeys of the species Saguinus (Oedipomidas) oedipus following oral and intraperitoneal infection by different cyst-forming Toxoplasma strains of varying virulence. I. Clinical, pathological anatomical and parasitological findings. Zentralbl Bakteriol Orig 209(4):553–569

    CAS  PubMed  Google Scholar 

  • World Health Organization (2004) Manual for the monitoring of yellow fever virus infection. Immunization VaB Geneva, World Health Organization, Switzerland, p 68

    Google Scholar 

  • Wlasiuk G, Nachman MW (2010a) Adaptation and constraint at Toll-like receptors in primates. Mol Biol Evol 27(9):2172–2186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wlasiuk G, Nachman MW (2010b) Promiscuity and the rate of molecular evolution at primate immunity genes. Evolution 64(8):2204–2220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wlasiuk G, Khan S, Switzer WM, Nachman MW (2009) A history of recurrent positive selection at the Toll-like receptor 5 in primates. Mol Biol Evol 26(4):937–949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woodall JP (1968) The reaction of a mangabey monkey (Cercocebus galeritus agilis Milne-Edwards) to inoculation with yellow fever virus. Ann Trop Med Parasitol 62(4):522–527

    CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8): 1586–1591

    CAS  PubMed  Google Scholar 

  • Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S et al (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308(5728):1626–1629

    CAS  PubMed  Google Scholar 

  • Yim JJ, Ding L, Schaffer AA, Park GY, Shim YS, Holland SM (2004) A microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene: functional implications and racial differences. FEMS Immunol Med Microbiol 40(2):163–169

    CAS  PubMed  Google Scholar 

  • Zahringer U, Lindner B, Inamura S, Heine H, Alexander C (2008) TLR2 - promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 213(3–4):205–224

    PubMed  Google Scholar 

  • Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A et al (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317(5844):1522–1527

    CAS  PubMed  Google Scholar 

  • Zhu J, Krishnegowda G, Li G, Gowda DC (2011) Proinflammatory responses by glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum are mainly mediated through the recognition of TLR2/TLR1. Exp Parasitol 128(3):205–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zurovsky Y, Laburn H, Mitchell D, MacPhail AP (1987) Responses of baboons to traditionally pyrogenic agents. Can J Physiol Pharmacol 65(6):1402–1407

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jessica F. Brinkworth or Kirstin N. Sterner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brinkworth, J.F., Sterner, K.N. (2013). Toll-Like Receptor Function and Evolution in Primates. In: Brinkworth, J., Pechenkina, K. (eds) Primates, Pathogens, and Evolution. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7181-3_4

Download citation

Publish with us

Policies and ethics