Skip to main content

1-Methyl-1,2,3,4-Tetrahydroisoquinoline and Addiction: Experimental Studies

  • Chapter
  • First Online:
Isoquinolines And Beta-Carbolines As Neurotoxins And Neuroprotectants

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 1))

  • 480 Accesses

Abstract

Drug abuse disorder is induced by a variety of substances and results from their interaction with the brain reward system. It is characterized by a high frequency of relapse, usually associated with craving. In this Chapter it is demonstrated that 1-methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous compound with antidopaminergic and neuroprotective activity prevented the development of morphine dependence and morphine-induced abstinent syndrome as well as cocaine-induced reinstatement in cocaine-dependent, self-administering rats. The changes in catecholamine metabolism persist for a considerable period after cessation of cocaine self-administration suggesting a long-lasting functional impairment of dopamine and noradrenaline systems. In contrast, the changes in the serotonergic system are transient showing the lack of involvement of serotonin in long-term consequences of exposure to cocaine. The depression of dopaminergic activity in the limbic structures may be responsible for craving. The fact that 1MeTIQ elevates the concentration of dopamine preferentially in the limbic structures (nucleus accumbens) in cocaine-dependent rats may be responsible for its inhibition of ­reinstatement. The results strongly support the view that 1-methyl-1,2,3,4-­tetrahydroisoquinoline has considerable potential as a drug for combating substance abuse disease through the attenuation of craving, and suggested a possibility of clinical application of 1MeTIQ at least in morphine and cocaine addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate

COMT:

Catechol-O-methyltransferase

DA:

Dopamine

DOPAC:

3,4-Dihydroxyphenylacetic acid

5-HT:

Serotonin

5-HIAA:

5-Hydroxyindoleacetic acid

HVA:

Homovanillic acid

MAO:

Monoamine oxidase

1MeTIQ:

1-Methyl-1,2,3,4-tetrahydroisoquinoline

MHPG:

3-Methoxy-4-hydroxyphenylglycol

3-MT:

3-Methoxytyramine

NA:

Noradrenaline

References

  • Abe K, Saitoh T, Horiguchi Y, Utsunomiya I et al (2005) Synthesis and neurotoxicity of tetrahydroisoquinoline derivatives for studying Parkinson’s disease. Biol Pharm Bull 28:1355–1362

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Vetulani J (2001) Tetrahydroisoquinolines as endogenous neurotoxins and neuroprotectants. Acta Neurobiol Exp 61:246

    Google Scholar 

  • Antkiewicz-Michaluk L, Michaluk J, Romańska I, Papla I et al (2000) Antidopaminergic effects of 1,2,3,4-tetrahydroisoquinoline and salsolinol. J Neural Transm 107:1009–1019

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Michaluk J, Mokrosz M, Romańska I et al (2001) Different action on dopamine catabolic pathways of two endogenous 1,2,3,4-tetrahydroisoquinolines with similar antidopaminergic properties. J Neurochem 78:100–108

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Karolewicz B, Romańska I, Michaluk J et al (2003) 1-Methyl-1,2,3,4-tetrahydroisoquinoline protects against rotenone-induced mortality and biochemical changes in rat brain. Eur J Pharmacol 466:263–269

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Wardas J, Michaluk J, Romańska I et al (2004) Protective effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline against dopaminergic neurodegeneration in the extrapyramidal structures produced by intracerebral injection of rotenone. Int J Neuropsy­chopharmacol 7:155–163

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Filip M, Kostowski W, Patsenka A et al (2005) 1-Methyl-1,2,3,4-tetrahydroisoquinoline attenuates ethanol, cocaine and morphine addiction in behavioral models: neurochemical correlates. Acta Neurobiol Exp 65:301–321

    Google Scholar 

  • Antkiewicz-Michaluk L, Filip M, Michaluk J, Romańska I et al (2006a) Conditioned rewarding stimulus associated with cocaine self-administration reverses the depression of catecholamines brain systems following cocaine withdrawal in rats. Int J Neuropsychopharmacol 9:37–50

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Łazarewicz JW, Patsenka A, Kajta M et al (2006b) The mechanism of 1,2,3,4-tetrahydroisoquinolines neuroprotection: the importance of free radicals scavenging properties and inhibition of glutamate-induced excitotoxicity. J Neurochem 97:846–856

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Filip M, Michaluk J, Romańska I et al (2007) An endogenous neuroprotectant substance, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), prevents the behavioral and neurochemical effects of cocaine reinstatement in drug-dependent rats. J Neural Transm 114:307–317

    Article  PubMed  CAS  Google Scholar 

  • Ayala A, Parrado J, Cano J, Machado A (1994) Reduction of 1-methyl 1,2,3,4-tetrahydroisoquinoline level in substantia nigra of the aged rat. Brain Res 638:334–336

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Nguyen LTL, Fuchs RA, Neisewander JL (2001) Influence of individual differences and chronic fluoxetine treatment on cocaine-seeking behavior in rats. Psychopharmacology 155:18–26

    Article  PubMed  CAS  Google Scholar 

  • Baumann MH, Milchanowski AB, Rothman RB (2004) Evidence for alterations in alpha2-adrenergic receptor sensitivity in rats exposed to repeated cocaine administration. Neuroscience 125:683–690

    Article  PubMed  CAS  Google Scholar 

  • Berger SP, Hall S, Mickalian JD, Reid MS et al (1996) Haloperidol antagonism of cue-elicited cocaine craving. Lancet 347:504–508

    Article  PubMed  CAS  Google Scholar 

  • Berridge K, Robinson T (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Biała G (2003) Calcium channel antagonists suppress nicotine-induced place preference and locomotor sensitization in rodents. Pol J Pharmacol 55:327–335

    PubMed  Google Scholar 

  • Biała G, Budzynska B (2008) Calcium-dependent mechanisms of the reinstatement of nicotine-conditioned place preference by drug priming in rats. Pharmacol Biochem Behav 89:116–125

    Article  PubMed  CAS  Google Scholar 

  • Biała G, Budzyńska B (2010) Rimonabant attenuates sensitization, cross-sensitization and cross-reinstatement of place preference induced by nicotine and ethanol. Pharmacol Rep 62:797–807

    PubMed  Google Scholar 

  • Campiani G, Butini S, Trotta F, Fattorusso C et al (2003) Synthesis and pharmacological evaluation of potent and highly selective D3 receptor ligands: inhibition of cocaine-seeking behavior and the role of dopamine D3/D2 receptors. J Med Chem 46:3822–3839

    Article  PubMed  CAS  Google Scholar 

  • Carroll FI (2003) 2002 Medicinal Chemistry Division Award address: monoamine transporters and opioid receptors. Targets for addiction therapy. J Med Chem 46:1775–1794

    Article  PubMed  CAS  Google Scholar 

  • Carroll KM, Rounsaville BJ, Nich C, Gordon LT et al (1994) One-year follow-up of psychotherapy and pharmacotherapy for cocaine dependence. Delayed emergence of psychotherapy effects. Arch Gen Psychiatry 51:989–997

    Article  PubMed  CAS  Google Scholar 

  • Carroll FI, Runyon SP, Abraham P et al (2004) Monoamine transporter binding, locomotor activity, and drug discrimination properties of 3-(4-substituted-phenyl)tropane-2-carboxylic acid methyl ester isomers. J Med Chem 47:6401–6409

    Article  PubMed  CAS  Google Scholar 

  • Cervo L, Carnovali F, Stark JA, Mennini T (2003) Cocaine-seeking behavior in response to drug-associated stimuli in rats: involvement of D3 and D2 dopamine receptors. Neuropsychopharmacology 28:1150–1159

    PubMed  CAS  Google Scholar 

  • Chapman D, Way E (1982) Modification of endorphin/enkephalin analgesia by divalent cations, a cation chelator and ionophore. Br J Pharmacol 75:389–396

    PubMed  CAS  Google Scholar 

  • Contreras E, Tamayo L, Amigo M (1988) Calcium channel antagonists increase morphine-induced analgesia and antagonize morphine tolerance. Eur J Pharmacol 148:463–466

    Article  PubMed  CAS  Google Scholar 

  • Cornish JL, Duffy P, Kalivas PW (1999) A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo E, Caro G, Baeyens EM (1987) Analgesic effects of several calcium channel blockers in mice. Eur J Pharmacol 137:155–160

    Article  PubMed  Google Scholar 

  • Di Chiara G (1995) The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 38:95–137

    Article  PubMed  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA et al (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47:227–241

    Article  PubMed  CAS  Google Scholar 

  • Di Ciano P, Coury A, Depoortere RY, Egilmez Y et al (1995) Comparison of changes in extracellular dopamine concentrations in the nucleus accumbens during intravenous self-administration of cocaine or d-amphetamine. Behav Pharmacol 6:311–322

    Article  PubMed  Google Scholar 

  • Edwards S, Koob GF (2010) Neurobiology of dysregulated motivational systems in drug addiction. Future Neurol 5:393–401

    Article  PubMed  CAS  Google Scholar 

  • Elverfors A, Nissbrandt H (1992) Effects of D-amphetamine on dopaminergic neurotransmission: a comparison between the substantia nigra and the striatum. Neuropharmacology 31:661–670

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH, Loughlin SE (1995) Substantia nigra. In: Paxinos G (ed) The Rat Nervous System. Academic, San Diego

    Google Scholar 

  • Fantegrossi WE (2007) Reinforcing effects of methylenedioxy amphetamine congeners in rhesus monkeys: are intravenous self-adminstration experiments relevant to MDMA neurotoxicity? Psychopharmacology 189:471–482

    Article  PubMed  CAS  Google Scholar 

  • Filip M, Antkiewicz-Michaluk L, Zaniewska M, Frankowska M et al (2007) Effects of 1-methyl-1,2,3,4-tetrahydroisoquinoline on the behavioral effects of cocaine in rats. J Physiol Pharmacol 58:625–639

    PubMed  CAS  Google Scholar 

  • Fuchs RA, Tran-Nguyen LTL, Specio SE, Groff RS et al (1998) Predictive validity of the extinction/reinstatement model of drug craving. Psychopharmacology 135:151–160

    Article  PubMed  CAS  Google Scholar 

  • Garzon J, Fuentes J, Del Rio J (1979) Effect of selective monoamine oxidase inhibitor drugs on morphine tolerance and physical dependence in mice. Neuropharmacology 18:531–536

    Article  PubMed  CAS  Google Scholar 

  • Gawin FH (1991) Cocaine addiction: psychology and neurophysiology. Science 251:1580–1586

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    Article  PubMed  Google Scholar 

  • Grassing K, He S (2005) Effects of high-dose of selegiline on morphine reinforcement and precipitated withdrawal in dependent rats. Behav Pharmacol 16:1–13

    Article  Google Scholar 

  • Gratton A, Wise RA (1994) Drug- and behavior-associated changes in dopamine-related electrochemical signals during intravenous cocaine self-administration in rats. J Neurosci 14:4130–4146

    PubMed  CAS  Google Scholar 

  • Grimm JW, Lu L, Hayashi T, Hope BT et al (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23:742–747

    PubMed  CAS  Google Scholar 

  • Guan LC, Robinson TE, Becker JB (1995) Sensitization of rotational behavior by a single exposure to cocaine. Pharmacol Biochem Behav 22:901–903

    Google Scholar 

  • Heidbreder CA, Hagan JJ (2005) Novel pharmacotherapeutic approaches for the treatment of drug addiction and craving. Curr Opin Pharmacol 51:07–118

    Google Scholar 

  • Hoffman DC (1989) The use of place conditioning in studying the neuropharmacology of drug reinforcement. Brain Res Bull 23:373–387

    Article  PubMed  CAS  Google Scholar 

  • Hoshaw BA, Lewis J (2001) Behavioral sensitization to ethanol in rats: evidence from the Sprague-Dawley strain. Pharmacol Biochem Behav 68:685–690

    Article  PubMed  CAS  Google Scholar 

  • Inglis FM, Moghaddam B (1999) Dopaminergic innervation of the amygdala is highly responsive to stress. J Neurochem 72:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253

    PubMed  CAS  Google Scholar 

  • Kalivas PW (1995) Interaction between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend 37:95–100

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, McFarland K (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology 168:44–56

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P, Du Mars LA, Skinner C (1988) Behavioral and neurochemical effects of acute and daily cocaine administration in rats. J Pharmacol Exp Ther 245:485–492

    PubMed  CAS  Google Scholar 

  • Kamikubo K, Niwa M, Fugimura H, Miura K (1983) Morphine inhibits depolarization-dependent calcium uptake by synaptosomes. Eur J Pharmacol 95:149–150

    Article  PubMed  CAS  Google Scholar 

  • Karoum F, Suddath RL, Wyatt RJ (1990) Chronic cocaine and rat brain catecholamines: long-term reduction in hypothalamic and fronta cortex dopamine metabolism. Eur J Pharmacol 186:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (2004a) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161–179

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (2004b) Ventral striatal control of appetitive motivation: role in ingestive behavior and revard-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  • Khanna NC, Sharma SK (1983) Megadoses of vitamine C prevent the development of tolerance and physical dependence on morphine in mice. Life Sci 33:401–404

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, LeMoal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsy­chopharmacology 24:97–129

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Nestler EJ (1997) The neurobiology of drug addiction. J Neuropsychiatry Clin Neurosci 9:482–497

    PubMed  CAS  Google Scholar 

  • Kuhar MJ, Pilotte NS (1996) Neurochemical changes in cocaine withdrawal. Trends Pharmacol Sci 17:260–264

    Article  PubMed  CAS  Google Scholar 

  • Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14:299–302

    Article  PubMed  CAS  Google Scholar 

  • Kuszczyk M, Słomka M, Antkiewicz-Michaluk L, Salińska E et al (2010) 1-Methyl-1,2,3,4-tetrahydroisoquinoline and established uncompetitive NMDA receptor antagonists induce tolerance to excitotoxicity. Pharmacol Rep 62:1041–1050

    PubMed  CAS  Google Scholar 

  • Le Foll B, Goldberg SR, Sokoloff P (2005) The dopamine D3 receptor and drug dependence: effects on reward or beyond? Neuropharmacology 49:525–541

    Article  PubMed  CAS  Google Scholar 

  • Lima MS, Reisser AA, Soares BG, Farrell M (2003) Antidepressants for cocaine dependence. Cochrane Database Syst Rev 2 CD002950

    Google Scholar 

  • Little KY, Patel UN, Clark TB, Butts JD (1996) Alteration of brain dopamine and serotonin levels in cocaine users: a preliminary report. Am J Psychiatry 153:1216–1218

    PubMed  CAS  Google Scholar 

  • Locke KW, Levesque TR, Nicholson KL, Balster RL (1996) Dexfenfluramine lacks amphetamine-like abuse potential. Prog Neuropsychopharmacol Biol Psychiatry 20:1019–1035

    Article  PubMed  CAS  Google Scholar 

  • Lorenc-Koci E, Wojcikowski J, Kot M, Haduch A et al (2004) Disposition of 1,2,3,4-tetrahydroisoquinoline in the brain of male Wistar and Dark Agouti rats. Brain Res 996:168–179

    Article  PubMed  CAS  Google Scholar 

  • Ma YY, Guo CY, Yu P, Lee DY et al (2006) The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats. Exp Neurol 200:343–355

    Article  PubMed  CAS  Google Scholar 

  • Mach UR, Hackling AE, Perachon S, Ferry S et al (2004) Development of novel 1,2,3,4-tetrahydroisoquinoline derivatives and closely related compounds as potent and selective dopamine D3 receptor ligands. Chem Biochem 5:508–518

    CAS  Google Scholar 

  • Mansour A, Watson SJ, Akil H (1995) Opioid receptors: past, present and future. Trends Neurosci 18:69–70

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Weiss F, Gold LH, Caine SB et al (1993) Animal models of drug craving. Psychopharmacology 112:163–182

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, Carrupt PA, Altomare C, Cellamare S et al (2001) Oral drug self-administration: an overview of laboratory animal studies. Alcohol 24:117–128

    Article  Google Scholar 

  • Meltzer HY (1994) An overview of the mechanism of action of clozapine. J Clin Psychiatry 55:47–52

    PubMed  Google Scholar 

  • Michaluk J, Karolewicz B, Antkiewicz-Michaluk L, Vetulani J (1998) Effects of various Ca2+ channel antagonists on morphine analgesia, tolerance and dependence, and on blood pressure in the rat. Eur J Pharmacol 352:189–197

    Article  PubMed  CAS  Google Scholar 

  • Michaluk J, Krygowska-Wajs A, Karolewicz B, Antkiewicz-Michaluk L (2002) Role of noradrenergic system in the mechanism of action of endogenous neurotoxin 1,2,3,4-tetrahydroisoquinoline: biochemical and functional studies. Pol J Pharmacol 54:19–25

    PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  CAS  Google Scholar 

  • Moore RJ, Vinsant SL, Nader MA, Porrino LJ et al (1998a) Effect of cocaine self-administration on striatal dopamine D1 receptors in rhesus monkeys. Synapse 28:1–9

    Article  PubMed  CAS  Google Scholar 

  • Moore RJ, Vinsant SL, Nader MA, Porrino LJ et al (1998b) Effect of cocaine self-administration on striatal dopamine D2 receptors in rhesus monkeys. Synapse 30:88–96

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29:99–111

    Article  PubMed  CAS  Google Scholar 

  • Nagy J (2004) The NR2B subtype of NMDA receptor: a potential target for the treatment of alcohol dependence. Curr Drug Targets CNS Neurol Disord 3:169–179

    Article  PubMed  CAS  Google Scholar 

  • Narayanan S, Willins D, Dalia A, Wallace L, Uretsky N (1996) Role of dopaminergic mechanisms in the stimulatory effects of MK-801 injected into the ventral tegmental area and the nucleus accumbens. Pharmacol Biochem Behav 54:565–573

    Article  PubMed  CAS  Google Scholar 

  • Parsons LH, Koob GF, Weiss F (1995) Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Ther 274:1182–1191

    PubMed  CAS  Google Scholar 

  • Patsenka A, Antkiewicz-Michaluk L (2004) Inhibition of rodent brain monoamine oxidase and tyrosine hydroxylase by endogenous compounds – 1,2,3,4-tetrahydroisoquinoline alkaloids. Pol J Pharmacol 56:727–734

    PubMed  CAS  Google Scholar 

  • Patsenka A, Michaluk J and Antkiewicz-Michaluk L (2004) 1,2,3,4-Tetrahydroisoquinoline alkaloids as endogenous inhibitors of brain monoamine oxidase, tyrosine hydroxylase and uptake of monoamines: in vitro study. In: 13th International Symposium on Molecular and Physiological Aspects of Regulatory Processes of the Organism. Krakow, Poland. Materials p. 344

    Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25:192–216

    Article  PubMed  CAS  Google Scholar 

  • Pietraszek M, Michaluk J, Romańska I, Wąsik A et al (2009) 1-Methyl-1,2,3,4-tetrahydroisoquinoline antagonizes a rise in brain dopamine metabolism, glutamate release in frontal cortex and locomotor hyperactivity produced by MK-801 but not the disruptions of prepulse inhibition, and impairment of working memory in rat. Neurotox Res 16:390–407

    Article  PubMed  CAS  Google Scholar 

  • Pitkanen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton J (ed) The Amygdala. Oxford University Press, Oxford, UK

    Google Scholar 

  • Popik P, Wróbel M (2002) Morphine conditioned reward is inhibited by MPEP, the mGluR5 antagonist. Neuropharmacology 43:1210–1217

    Article  PubMed  CAS  Google Scholar 

  • Popik P, Mamczarz J, Fraczek M, Widła M et al (1998) Inhibition of reinforcing effects of morphine and naloxone-precipitated opioid withdrawal by novel glycine site and uncompetitive NMDA receptor antagonists. Neuropharmacology 37:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Pulvirenti L, Maldonado-Lopez R, Koob GF (1992) NMDA receptors in the nucleus accumbens modulate intravenous cocaine but not heroin self-administration in rat. Brain Res 594:327–330

    Article  PubMed  CAS  Google Scholar 

  • Ranaldi R, Roberts DC (1996) Initiation, maintenance and extinction of cocaine self-administration with and without conditioned reward. Psychopharmacology 128:89–96

    Article  PubMed  CAS  Google Scholar 

  • Risinger FO, Roger AO (1995) Nicotine-induced conditioned place preference and conditioned aversion in mice. Pharmacol Biochem Behav 51:457–461

    Article  PubMed  CAS  Google Scholar 

  • Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Rodefer JS, Carroll ME (1999) Concurrent progressive-ratio schedules to compare reinforcing effectiveness of different phencyclidine (PCP) concentrations in rhesus monkeys. Psychophar­macology 144:163–174

    Article  PubMed  CAS  Google Scholar 

  • Rossetti ZL, Hmaidan Y, Gessa GL (1992) Marked inhibition of meso-limbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221:227–234

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Blazquez P, Boronat BA, Olmos G, Garcia-Sevilla JA et al (2000) Activation of 1(2)-imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors. Br J Pharmacol 130:146–152

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  CAS  Google Scholar 

  • Segal DS, Geyer MA, Schuckit MA (1981) Stimulant-induced psychosis: an evaluation of animal methods. Essays Neurochem Neuropharmacol 5:95–129

    PubMed  CAS  Google Scholar 

  • Smelson DA, Williams J, Ziedonis D, Sussner BD et al (2004) A double-blind placebo-controlled pilot study of risperidone for decreasing cue-elicited craving in recently withdrawn cocaine dependent patients. J Subst Abuse Treat 27:45–49

    Article  PubMed  Google Scholar 

  • Tasaki Y, Makino Y, Ohta S, Hirobe M (1991) 1-Methyl-1,2,3,4-tetrahydroisoquinoline, decreasing in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse, prevents parkinsonism-like behavior abnormalities. J Neurochem 57:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Trulson ME, Ulissey MJ (1987) Chronic cocaine administration decreases dopamine synthesis rate and increases [3H] spiroperidol binding in rat brain. Brain Res Bull 19:35–38

    Article  PubMed  CAS  Google Scholar 

  • Ungless MA (2004) Dopamine: the salient issue. Trends Neurosci 27:702–706

    Article  PubMed  CAS  Google Scholar 

  • Valentino RJ, Curtis AL (1991) Antidepressant interactions with corticotropin-releasing factor in the noradrenergic nucleus locus coeruleus. Psychopharmacol Bull 27:263–269

    PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alteration in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J (2001) Drug addiction. Part II. Neurobiology of addiction (review). Pol J Pharmacol 53:303–317

    PubMed  CAS  Google Scholar 

  • Vetulani J, Antkiewicz-Michaluk L, Michaluk J (2003a) Modification of morphine analgesia, tolerance and abstinence by 1,2,3,4-tetrahydroisoquinoline. Eur Neuropsychopharmacol 113:S29–S30

    Article  Google Scholar 

  • Vetulani J, Antkiewicz-Michaluk L, Nalepa I, Sansone M (2003b) A possible physiological role for cerebral tetrahydroisoquinolines. Neurotox Res 5:147–155

    Article  PubMed  Google Scholar 

  • Wąsik A, Romanska I, Antkiewicz-Michaluk L (2007) The effect of an endogenous compound 1-methyl-1,2,3,4-tetrahydroisoquinoline on morphine-induced analgesia, dependence and neurochemical changes in dopamine metabolism in rat brain structures. J Physiol Pharmacol 58:235–252

    Article  PubMed  CAS  Google Scholar 

  • Wasik A, Romanska I, Antkiewicz-Michaluk L (2009) 1-Benzyl-1,2,3,4-tetrahydroisoquinoline, an endogenous parkinsonism-inducing toxin strongly potentiates MAO-dependent dopamine oxidation and impairs dopamine release: ex vivo and in vivo neurochemical studies. Neurotox Res 15:15–23

    Article  PubMed  CAS  Google Scholar 

  • Wąsik A, Romańska I, Antkiewicz-Michaluk L (2010) An important role of 3-methoxytyramine in the inhibition of cocaine sensitizition by 1-methyl-1,2,3,4-tetrahydroisoquinoline: in vivo microdialysis study. Pharmacol Rep 62:983–997

    PubMed  Google Scholar 

  • Weiss F, Markou A, Lorang MT, Koob GF (1992) Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res 593:314–318

    Article  PubMed  CAS  Google Scholar 

  • Wilcox KM, Rowlett JK, Paul IA, Ordway GA et al (2000) On the relationship between the dopamine transporter and the reinforcing effects of local anesthetics in rhesus monkeys: practical and theoretical concerns. Psychopharmacology 153:139–147

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Murray A, Bozarth MA (1990) Bromocriptine self-administration and bromocriptine-reinstatement of cocaine-trained and heroin-trained lever pressing in rats. Psychopharmacology 100:355–360

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, Johnson KM (1992) Neurobiology of cocaine abuse. Trends Pharmacol Sci 13:193–200

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa T, Ohta S (1997) Isolation of 1-methyl-1,2,3,4-tetrahydroisoquinoline-synthesizing enzyme from rat brain: a possible Parkinson’s disease-preventing enzyme. Biochem Biophys Res Commun 236:676–681

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa T, Ohta S (1999) Biosynthesis of a parkinsonism-preventing substance, 1-methyl-1,2,3,4-tetrahydroisoquinoline, is inhibited by parkinsonism-inducing compounds in rat brain mitochondrial fraction. Neurosci Lett 259:157–160

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa T, Kotake Y, Fuijtani M, Shintani H et al (1999) Regional distribution of parkinsonism-preventing endogenous tetrahydroisoquinoline derivatives and an endogenous parkinsonism-preventing substance-synthesizing enzyme in monkey brain. Neurosci Lett 276:68–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. Jan Boksa (Department of Medicinal Chemistry, Institute of Pharmacology Polish Academy of Sciences) for synthesis of 1MeTIQ. The author thanks Polish Committee of Scientific Research (project N N401 004836) and the statutory funds of the Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucyna Antkiewicz-Michaluk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Antkiewicz-Michaluk, L., Michaluk, J. (2012). 1-Methyl-1,2,3,4-Tetrahydroisoquinoline and Addiction: Experimental Studies. In: Antkiewicz-Michaluk, L., Rommelspacher, H. (eds) Isoquinolines And Beta-Carbolines As Neurotoxins And Neuroprotectants. Current Topics in Neurotoxicity, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1542-8_4

Download citation

Publish with us

Policies and ethics