Skip to main content

Learning from the Past: Approaches for Reproducibility in Computational Neuroscience

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

Abstract

Reproducible experiments are the cornerstone of science: only observations that can be independently confirmed enter the body of scientific knowledge. Computational science should excel in reproducibility, as simulations on digital computers avoid many of the small variations that are beyond the control of the experimental biologist or physicist. However, in reality, computational science has its own challenges for reproducibility: many computational scientists find it difficult to reproduce results published in the literature, and many authors have met problems replicating even the figures in their own papers. We present a distinction between different levels of replicability and reproducibility of findings in computational neuroscience. We also demonstrate that simulations of neural models can be highly sensitive to numerical details, and conclude that often it is futile to expect exact replicability of simulation results across simulator software packages. Thus, the computational neuroscience community needs to discuss how to define successful reproduction of simulation studies. Any investigation of failures to reproduce published results will benefit significantly from the ability to track the provenance of the original results. We present tools and best practices developed over the past 2 decades that facilitate provenance tracking and model sharing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    expm1(x) is a library function computing exp(x)-1 with high precision for small x.

References

  • Bower JM, Beeman D (1997) The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System. Springer, New York

    Google Scholar 

  • Bhalla U, Bilitch DH, Bower J (1992) Rallpacks: a set of benchmarks for neural simulators. Trends Neurosci 15:453–458

    Article  PubMed  CAS  Google Scholar 

  • Bray T, Paoli J, Sperberg-McQueen C (1998) Extensible markup language (XML) 1.0. http://www.w3.org/TR/REC-xml

  • Breslow NE (2010) Commentary. Biostatistics 11(3):379–380. doi:10.1093/biostatistics/kxq025

    Article  PubMed  Google Scholar 

  • Brette R (2006) Exact simulation of integrate-and-fire models with synaptic conductances. Neural Comput 18:2004–2027

    Article  PubMed  Google Scholar 

  • Brette R (2007) Exact simulation of integrate-and-fire models with exponential currents. Neural Comput 19:2604–2609

    Article  PubMed  Google Scholar 

  • Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC Jr, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison AP, Boustani SE, Destexhe A (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23:349–398

    Article  PubMed  Google Scholar 

  • Brüderle D, Muller E, Davison A, Muller E, Schemmel J, Meier K (2009) Establishing a novel modeling tool: a Python-based interface for a neuromorphic hardware system. Front Neuroinform 3:17. doi:10.3389/neuro.11.017.2009

    PubMed  Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183–208

    Article  PubMed  CAS  Google Scholar 

  • Cannon R, Howell F, Goddard N, De Schutter E (2002) Non-curated distributed databases for experimental data and models in neuroscience. Network 13:415–428

    Article  PubMed  CAS  Google Scholar 

  • Cannon RC, Gewaltig MO, Gleeson P, Bhalla US, Cornelis H, Hines ML, Howell FW, Muller E, Stiles JR, Wils S, Schutter ED (2007) Interoperability of neuroscience modeling software: current status and future directions. Neuroinformatics 5:127–138

    Article  PubMed  Google Scholar 

  • Carnevale N, Hines M (2006) The NEURON book. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Claerbout JF, Karrenbach M (1992) Electronic documents give reproducible research a new meaning. In: SEG expanded abstracts, Society of Exploration Geophysicists, vol 11, pp 601–604

    Google Scholar 

  • Cox DR, Donnelly C (2010) Commentary. Biostatistics 11(3):381–382. doi:10.1093/biostatistics/kxq026

    Article  PubMed  CAS  Google Scholar 

  • Craver CF (2007) Explaining the brain: mechanisms and the Mosaic Unity of Neuroscience. Oxford University Press, New York

    Book  Google Scholar 

  • Crook S, Howell F (2007) XML for data representation and model specification. In: Crasto C (ed)Methods in molecular biology book series: neuroinformatics. Humana Press, Totowa, NJ, pp 53–66

    Google Scholar 

  • Crook S, Gleeson P, Howell F, Svitak J, Silver R (2007) MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics 5:96–104

    Article  PubMed  Google Scholar 

  • D’Haene M (2010) Efficient simulation strategies for spiking neural networks. PhD thesis, Universiteit Gent

    Google Scholar 

  • Davison A, Morse T, Migliore M, Marenco L, Shepherd G, Hines M (2002) ModelDB: a resource for neuronal and network modeling. In: Kötter R (ed) Neuroscience databases: a practical guide. Kluwer Academic, Norwell, MA, pp 99–122

    Google Scholar 

  • Davison A, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2009) PyNN: a common interface for neuronal network simulators. Front Neuroinform 2:11. doi:10.3389/neuro.11.011.2008

    Google Scholar 

  • de Leeuw J (2001) Reproducible research: the bottom line. Tech. Rep., Department of Statistics, UCLA, UC Los Angeles. http://escholarship.org/uc/item/9050x4r4

  • DeAngelis CD, Fontanarosa PB (2010) The importance of independent academic statistical analysis. Biostatistics 11(3):383–384. doi:10.1093/biostatistics/kxq027

    Article  PubMed  Google Scholar 

  • Djurfeldt M, Lansner A (2007) Workshop report: 1st INCF Workshop on Large-scale Modeling of the Nervous System. Available from Nature Precedings http://dx.doi.org/10.1038/npre.2007.262.1

    Google Scholar 

  • Donoho DL (2010) An invitation to reproducible computational research. Biostatistics 11(3):385–388. doi:10.1093/biostatistics/kxq028

    Article  PubMed  Google Scholar 

  • Donoho DL, Maleki A, Rahman IU, Shahram M, Stodden V (2009) 15 years of reproducible research in computational harmonic analysis. Comput Sci Eng 11:8–18. doi:10.1109/MCSE.2009.15

    Article  Google Scholar 

  • Drummond C (2009) Replicability is not reproducibility: nor is it good science. In: Proceedings of the evaluation methods for machine learning workshop at the 26th ICML, Montreal, CA

    Google Scholar 

  • Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2008) PyNEST: a convenient interface to the NEST simulator. Front Neuroinform 2:12. doi:10.3389/neuro.11.012.2008

    Article  PubMed  Google Scholar 

  • Ferrenberg AM, Landau DP, Wong YJ (1992) Monte Carlo simulations: hidden errors from “good” random number generators. Phys Rev Lett 69(23):3382–3384. doi:10.1103/PhysRevLett.69.3382

    Article  PubMed  CAS  Google Scholar 

  • Finney A, Hucka M, Bornstein B, Keating S, Shapiro B, Matthews J, Kovitz B, Schilstra M, Funahashi A, Doyle J, Kitano H (2006) Software infrastructure for effective communication and reuse of computational models. In: Szallasi Z, Stelling J, Periwal V (eds) Systems modeling in cell biology: from concepts to nuts and bolts. MIT Press, Boston, pp 369–378

    Google Scholar 

  • Funk W, Dammann V, Donnevert G (2006) Quality assurance in analytical chemistry, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Galluppi F, Rast A, Davies S, Furber S (2010) A general-purpose model translation system for a universal neural chip. In: Wong K, Mendis B, Bouzerdoum A (eds) Neural information processing. Theory and algorithms, Lecture notes in computer science, vol 6443. Springer, Berlin, pp 58–65

    Google Scholar 

  • Gardner D, Knuth KH, Abato M, Erde SM, White T, DeBellis R, Gardner EP (2001) Common data model for neuroscience data and data model exchange. J Am Med Inform Assoc 8:17–33

    Article  PubMed  CAS  Google Scholar 

  • Gardner D, Akil H, Ascoli G, Bowden D, Bug W, Donohue D, Goldberg D, Grafstein B, Grethe J, Gupta A, Halavi M, Kennedy D, Marenco L, Martone M, Miller P, Müller H, Robert A, Shepherd G, Sternberg P, Van Essen D, Williams R (2008) The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics 6(3):149–160

    Article  PubMed  Google Scholar 

  • Gewaltig MO, Diesmann M (2007) NEST (NEural Simulation Tool). Scholarpedia 2(4):1430

    Article  Google Scholar 

  • Gewaltig MO, Koerner EE (2008) Self-sustained dynamics of sparsely connected networks without external noise. In: 2008 Neuroscience meeting planner, Society for Neuroscience, Washington, DC, program No. 220.1

    Google Scholar 

  • Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks in 3D space. Neuron 54:219–235

    Article  PubMed  CAS  Google Scholar 

  • Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6(6):e1000815. doi:10.1371/journal.pcbi.1000815

    Article  PubMed  Google Scholar 

  • Goddard N, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D (2001) NeuroML: model description methods for collaborative modelling in neuroscience. Philos Trans R Soc Lond B Biol Sci 356:1209–1228

    Article  PubMed  CAS  Google Scholar 

  • Goodman D (2010a) Code generation: a strategy for neural network simulators. Neuroinformatics 8:183–196. doi:10.1007/s12021-010-9082-x

    Article  PubMed  Google Scholar 

  • Goodman SN (2010b) Commentary. Biostatistics 11(3):389–390. doi:10.1093/biostatistics/kxq030

    Article  PubMed  Google Scholar 

  • Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in Python. Front Neuroinform 2:5. doi:10.3389/neuro.11.005.2008

    Article  PubMed  Google Scholar 

  • Gorchetchnikov A, The INCF Multiscale Modeling Taskforce (2010) NineML—a description language for spiking neuron network modeling: the user layer. BMC Neurosci 11(suppl 1):P71

    Article  Google Scholar 

  • Grebogi C, Hammel SM, Yorke JA, Sauer T (1990) Shadowing of physical trajectories in chaotic dynamics: containment and refinement. Phys Rev Lett 65(13):1527–1530. doi:10.1103/PhysRevLett.65.1527

    Article  PubMed  Google Scholar 

  • Groves T (2010) The wider concept of data sharing: view from the BMJ. Biostatistics 11(3):391–392. doi:10.1093/biostatistics/kxq031

    Article  PubMed  Google Scholar 

  • Gruntz D, Waldvogel J (2004) Orbits in the planar three-body problem. In: Gander W, Hřebíček J (eds) Solving problems in scientific computing using Maple and MATLAB, 4th edn. Springer, Berlin, pp 51–72

    Chapter  Google Scholar 

  • Hansel D, Mato G, Meunier C, Neltner L (1998) On numerical simulations of integrate-and-fire neural networks. Neural Comput 10:467–483

    Article  PubMed  CAS  Google Scholar 

  • Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M (2010) A general and efficient method for incorporating exact spike times in globally time-driven simulations. Front Neuroinform 4:113. doi:10.3389/fninf.2010.00113

    Article  PubMed  Google Scholar 

  • Hedley W, Nelson M, Nielsen P, Bullivant D, Hunter P (2000) XML languages for describing biological models. In: Proceedings of the Physiological Society of New Zealand, vol 19

    Google Scholar 

  • Heijmen T (2011) Soft errors from space to ground: historical overview, empirical evidence, and future trends (chap 1). In: Nicolaidis M (ed) Soft errors in modern electronic systems, Frontiers in electronic testing, vol 41. Springer, New York, pp 1–25

    Google Scholar 

  • Hines M (1989) A program for simulation of nerve equations with branching geometries. Int J Biomed Comput 24:55–68

    Article  PubMed  CAS  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179–1209

    Article  PubMed  CAS  Google Scholar 

  • Hines ML, Carnevale NT (2000) Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Comput 12:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17(1):7–11. doi:10.1023/B:JCNS.0000023869.22017.2e

    Article  PubMed  Google Scholar 

  • Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, Kitano H, Arkin A (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  PubMed  CAS  Google Scholar 

  • Humphreys P (2004) Extending ourselves: computational science, empiricism, and scientific method. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hund F (1996) Geschichte der physikalischen Begriffe. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Ioannidis JPA (2005) Why most published research findings are false. PLoS Med 2:e124. doi:10.1371/journal.pmed.0020124

    Article  PubMed  Google Scholar 

  • Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for Python. http://www.scipy.org/

  • Keiding N (2010a) Reproducible research and the substantive context. Biostatistics 11(3):376–378. doi:10.1093/biostatistics/kxq033

    Article  PubMed  Google Scholar 

  • Keiding N (2010b) Reproducible research and the substantive context: response to comments. Biostatistics 11(3):395–396. doi:10.1093/biostatistics/kxq034

    Article  PubMed  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. doi:10.1371/journal.pbio.1000412

    Article  PubMed  Google Scholar 

  • Köhn D, Le Novère N (2008) SED-ML—an XML format for the implementation of the MIASE guidelines. In: Heiner M, Uhrmacher A (eds) Computational methods in systems biology, Lecture notes in computer science, vol 5307. Springer, Berlin, pp 176–190

    Google Scholar 

  • Küppers G, Lenhard J (2005) Validation of simulation: patterns in the social and natural sciences. J Artif Soc Soc Simul 8(4):3

    Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarization. J Physiol Pathol Gen 9:620–635

    Google Scholar 

  • Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep J, Hucka M (2006) BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34(Database issue):D689–D691

    Article  PubMed  Google Scholar 

  • Lehrer J (2010) The truth wears off. The New Yorker, 13 Dec 2010:52

    Google Scholar 

  • Lloyd C, Halstead M, Nielsen P (2004) CellML: its future, present and past. Prog Biophys Mol Biol 85:433–450

    Article  PubMed  CAS  Google Scholar 

  • Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF (2008) The CellML model repository. Bioinformatics 24(18):2122–2123. doi:10.1093/bioinformatics/btn390

    Article  PubMed  CAS  Google Scholar 

  • Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger-Frank E, Jones M, Lee E, Tao J, Zhao Y (2006) Scientific workflow management and the Kepler system. Concurrency Comput Pract Exp 18(10):1039–1065

    Article  Google Scholar 

  • Marenco L, Wang R, Shepherd G, Miller P (2010) The NIF DISCO framework: facilitating automated integration of neuroscience content on the web. Neuroinformatics 8(2):101–112

    Article  PubMed  Google Scholar 

  • Maunsell J (2010) Announcement regarding supplemental material. J Neurosci 30:10599–10600

    CAS  Google Scholar 

  • Mesirov JP (2010) Accessible reproducible research. Science 327(5964):415–416. doi:10.1126/science.1179653

    Article  PubMed  CAS  Google Scholar 

  • Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML (2003) ModelDB: making models publicly accessible to support computational neuroscience. Neuroinformatics 1(1):135–139

    Article  PubMed  Google Scholar 

  • Miner R (2005) The importance of MathML to mathematical communication. Notices AMS 52:532–538

    Google Scholar 

  • Morrison A, Straube S, Plesser HE, Diesmann M (2007) Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput 19:47–79

    Article  PubMed  Google Scholar 

  • Morse TM (2007) Model sharing in computational neuroscience. Scholarpedia 2(4):3036

    Article  Google Scholar 

  • Nordlie E, Plesser HE (2010) Visualizing neuronal network connectivity with connectivity pattern tables. Front Neuroinform 3:39. doi:10.3389/neuro.11.039.2009

    PubMed  Google Scholar 

  • Nordlie E, Gewaltig MO, Plesser HE (2009) Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5(8):e1000456. doi:10.1371/journal.pcbi.1000456

    Article  PubMed  Google Scholar 

  • Oinn T, Greenwood M, Addis M, Alpdemir M, Ferris J, Glover K, Goble C, Goderis A, Hull D, Marvin D, Li P, Lord P, Pocock MR, Senger M, Stevens R, Wipat A, Wroe C (2006) Taverna: lessons in creating a workflow environment for the life sciences. Concurr Comput Pract Exp 18(10):1067–1100. doi:10.1002/cpe.993

    Article  Google Scholar 

  • Pecevski D, Natschläger T, Schuch K (2009) PCSIM: a parallel simulation environment for neural circuits fully integrated with Python. Front Neuroinform 3:11. doi:10.3389/neuro.11.011.2009

    Article  PubMed  Google Scholar 

  • Peng RD (2009) Reproducible research and biostatistics. Biostatistics 10(3):405–408. doi:10.1093/biostatistics/kxp014

    Article  PubMed  Google Scholar 

  • Peng RD (2010) Discussion of Keiding. Biostatistics 11(3):393–394. doi:10.1093/biostatistics/kxq032

    Article  PubMed  Google Scholar 

  • Peterson B, Healy M, Nadkarni P, Miller P, Shepherd G (1996) ModelDB: an environment for running and storing computational models and their results applied to neuroscience. J Am Med Inform Assoc 3:389–398

    Article  PubMed  CAS  Google Scholar 

  • Petzold L (1983) Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J Sci Comput 4:136–148. doi:10.1137/0904010

    Article  Google Scholar 

  • Plesser HE, Austvoll K (2009) Specification and generation of structured neuronal network models with the NEST topology module. BMC Neurosci 10(suppl 1):P56. doi:10.1186/1471-2202-10-S1-P56

    Article  Google Scholar 

  • Quirk JJ (2005) Computational science: “same old silence, same old mistakes; something more is needed”. In: Plewa T, Linde T, Weirs VG (eds) Adaptive mesh refinement—theory and applications. Springer, Berlin, pp 3–28

    Chapter  Google Scholar 

  • Raikov I, The INCF Multiscale Modeling Taskforce (2010) NineML—a description language for spiking neuron network modeling: the abstraction layer. BMC Neurosci 11(suppl 1):P66

    Article  Google Scholar 

  • Rotter S, Diesmann M (1999) Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol Cybern 81:381–402

    Article  PubMed  CAS  Google Scholar 

  • Schrödinger E (1915) Zur Theorie der Fall-und Steigversuche an Teilchen mit Brownscher Bewegung. Phys Zeit 16:289–295

    Google Scholar 

  • Shelley MJ, Tao L (2001) Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. J Comput Neurosci 11:111–119

    Article  PubMed  CAS  Google Scholar 

  • Silva CT, Freire J, Callahan S (2007) Provenance for visualizations: reproducibility and beyond. Comput Sci Eng 9(5):82–90

    Article  Google Scholar 

  • Stodden V (2009a) Enabling reproducible research: open licensing for scientific innovation. Int J Commun Law Policy 13:2–25, http://www.ijclp.net/files/ijclp_web-doc_1-13-2009.pdf

    Google Scholar 

  • Stodden V (2009b) The legal framework for reproducible research in the sciences: licensing and copyright. IEEE Comput Sci Eng 11(1):35–40

    Article  Google Scholar 

  • Usui S (2003) Visiome: neuroinformatics research in vision project. Neural Netw 16:1293–1300

    Article  PubMed  Google Scholar 

  • Vandewalle P, Kovačević J, Vetterli M (2009) Reproducible research in signal processing. IEEE Signal Proc Mag 26(3):37–47. doi:10.1109/MSP.2009.932122

    Article  Google Scholar 

  • Wilson MA, Bhalla US, Uhley JD, Bower JM (1989) GENESIS: a system for simulating neural networks. In: Touretzky D (ed) Advances in neural information processing systems. Morgan Kaufmann, San Mateo, CA, pp 485–492

    Google Scholar 

Download references

Acknowledgments

S.C. acknowledges support from the National Institute of Mental Health under grant R01MH061905. A.P.D. acknowledges support from the Centre National de la Recherche Scientifique and from the European Union under grant FP7-ICT-FET-269921 (BrainScaleS). H.E.P. acknowledges support from the Research Council of Norway under grant 178892/V30 eNeuro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon M. Crook Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crook, S.M., Davison, A.P., Plesser, H.E. (2013). Learning from the Past: Approaches for Reproducibility in Computational Neuroscience. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_4

Download citation

Publish with us

Policies and ethics