Skip to main content

Advertisement

Log in

Interoperability of Neuroscience Modeling Software: Current Status and Future Directions

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Neuroscience increasingly uses computational models to assist in the exploration and interpretation of complex phenomena. As a result, considerable effort is invested in the development of software tools and technologies for numerical simulations and for the creation and publication of models. The diversity of related tools leads to the duplication of effort and hinders model reuse. Development practices and technologies that support interoperability between software systems therefore play an important role in making the modeling process more efficient and in ensuring that published models can be reliably and easily reused. Various forms of interoperability are possible including the development of portable model description standards, the adoption of common simulation languages or the use of standardized middleware. Each of these approaches finds applications within the broad range of current modeling activity. However more effort is required in many areas to enable new scientific questions to be addressed. Here we present the conclusions of the “Neuro-IT Interoperability of Simulators” workshop, held at the 11th computational neuroscience meeting in Edinburgh (July 19–20 2006; http://www.cnsorg.org). We assess the current state of interoperability of neural simulation software and explore the future directions that will enable the field to advance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baxter, S. M., Day, S. W., Fetrow, J. S., & Reisinger, S. J. (2006). Scientific software development is not an oxymoron. PLoS Comput Biol, 2, e87.

    Article  PubMed  CAS  Google Scholar 

  • Bednar, J. A., Choe, Y., De Paula, J., Miikkulainen, R., Provost, J., & Tversky, T. (2003). Modeling cortical maps with topographica. Neurocomputing, 58, 1129–1135.

    Article  Google Scholar 

  • Bhalla, U. S. (2001). Modeling networks of signaling pathways. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 25–48). Boca Raton: CRC.

    Google Scholar 

  • Bower, J. M., & Beeman, D. (1998). The book of Genesis: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed.). New York: Springer.

    Google Scholar 

  • Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007) Simulation of networks of spiking neurons: A review of tools and strategies. http://arxiv.org/abs/q-bio.NC/0611089.

  • Brunel, N., & Wang, X.-J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience, 11, 63–85.

    Article  PubMed  CAS  Google Scholar 

  • Cannon, R. C., Hasselmo, M. E., & Koene, R. A. (2003) From biophysics to behavior: Catacomb2 and the design of biologically plausible models for spatial navigation. Neuroinformatics, 1, 3–42.

    Article  PubMed  Google Scholar 

  • Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. UK: Cambridge University Press.

    Google Scholar 

  • Chen, C., & Hess, P. (1990). Mechanism of gating of T-type calcium channels. Journal of General Physiology, 96, 603–630. DOI 10.1085/jgp.96.3.603.

    Article  PubMed  CAS  Google Scholar 

  • Crook, S., Beeman, D., Gleeson, P., & Howell, F. (2005). XML for model specification in neuroscience: An introduction and workshop summary. Brains, Minds, and Media, 1, bmm228 (urn:nbn:de:0009-3-2282).

    Google Scholar 

  • Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics, 5, (In press).

  • Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., & Hunter, P. J. (2003). An overview of CellML 1.1, a biological model description language. Simulation, 79, 740–747.

    Article  Google Scholar 

  • De Schutter, E., & Beeman, D. (1998). Speeding up GENESIS simulations. In J. M. Bower & D. Beeman (Eds.), The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed., pp. 329–347). Springer New York: Telos.

    Google Scholar 

  • De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje-cell .2. Simulation of synaptic responses. Journal of Neurophysiology, 71, 401–419.

    PubMed  Google Scholar 

  • De Schutter, E., Ekeberg, Ö., Kotaleski, J. H., Achard, P., & Lansner, A. (2005). Biophysically detailed modelling of microcircuits and beyond. Trends in Neurosciences, 28, 562–569.

    Article  PubMed  CAS  Google Scholar 

  • Diesmann, M., & Gewaltig, M.-O. (2002). NEST: An environment for neural systems simulations in Forschung und wissenschaftliches Rechnen, GWDG-Bericht (pp 43–70). In T. Plesser & V. Macho (Eds.). Göttingen (D): Ges. fuer Wissenschaftliche Datenverarbeitung.

  • Gardner, D., Toga, A. W., Ascoli, G. A., Beatty, J., Brinkley, J. F., Dale, A. M., et al. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 3, 286–289.

    Google Scholar 

  • Goddard, N. H., Beeman, D., Cannon, R. C., Cornelis, H., Gewaltig, M.-O., Hood, G., et al. (2002). NeuroML for plug and play neuronal modeling. Neurocomputing, 44, 1077–1081.

    Article  Google Scholar 

  • Goddard, N., Hood, G., Howell, F., Hines, M., & De Schutter, E. (2001). NEOSIM: Portable large-scale plug and play modelling. Neurocomputing, 38, 1657–1661.

    Article  Google Scholar 

  • Hille, B. (2001). Ionic channels of excitable membranes. Sunderland, MA: Sinauer Associates INC.

    Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

    Article  PubMed  CAS  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007.

    Article  PubMed  CAS  Google Scholar 

  • Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics, 19, 524–531. DOI 10.1093/bioinformatics/btg015.

    Article  PubMed  CAS  Google Scholar 

  • Insel, T. R., Volkow, N. D., Li, T. K., Battey, J. F., & Landis, S. C. (2003). Neuroscience networks: Data-sharing in an information age. PLoS Biol, 1, e17. DOI 10.1371/journal.pbio.0000017.

    Article  PubMed  CAS  Google Scholar 

  • Koslow, S. H. (2002). Sharing primary data: A threat or asset to discovery? Nature reviews. Neuroscience, 3, 311–313.

    Article  PubMed  CAS  Google Scholar 

  • Kötter, R., Nielse, P., Dyhrfjeld-Johnsen, J., Sommer, F. T., & Northoff, G. (2002). Multi-level neuron and network modeling in computational neuroanatomy. In G. Ascoli (Ed.), Computational neuroanatomy: Principles and methods. Totowa, NJ: Humana.

    Google Scholar 

  • Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., et al. (2006). BioModels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 34, D689–D691. DOI 10.1093/nar/gkj092.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, W. J. (1994). Practical advantages of declarative programming. In Proc. Joint Conference on Declarative Programming, GULP-PRODE.

  • Migliore, M., Morse, T. M., Davison, A. P., Marenco, L., Shepherd, G. M., Hines, M. L., et al. (2003). ModelDB: Making models publicly accessible to support computational neuroscience. Neuroinformatics, 1, 135–139.

    Article  PubMed  Google Scholar 

  • Roth, A., Nusser, Z., & Häusser, M. (2000). Monte Carlo simulations of synaptic transmission in detailed three-dimensional reconstructions of cerebellar neuropil. European Journal of Neuroscience, 12(Suppl. 11), 14.

    Google Scholar 

  • Schwab, M., Karrenbach, M., & Claerbout, J. (2000). Making scientific computations reproducible. Computing in Science & Engineering, 2, 61–67.

    Article  Google Scholar 

  • Stiles, J. R., & Bartol, T. M. (2001). Methods for simulating realistic synaptic microphysiology using MCell. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 87–127). Boca Raton: CRC.

    Google Scholar 

  • Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E. N., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.

    Article  PubMed  Google Scholar 

  • Traub, R. D., Jefferys, J. G. R., Miles, R., Whittington, M. A., & Toth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neuron. Journal of Physiology (London. Print), 481, 7995.

    Google Scholar 

  • Vandenberg, C. A., & Bezanilla, F. (1991). A sodium-channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant-axon. Biophysical Journal, 60, 1511–1533.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The workshop was supported by the European Commission IST-2001-35498 Neuro-IT-Net Thematic Network. Robert Cannon was supported by NIH NIDA grant DA16454 as part of the CRCNS program. Michael Hines is funded by grants NINDS NS11613 (NEURON) and NIH DC04732 (ModelDB). Padraig Gleeson is in receipt of a Special Research Training Fellowship from the United Kingdom Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik De Schutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, R.C., Gewaltig, MO., Gleeson, P. et al. Interoperability of Neuroscience Modeling Software: Current Status and Future Directions. Neuroinform 5, 127–138 (2007). https://doi.org/10.1007/s12021-007-0004-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-007-0004-5

Keywords

Navigation