Skip to main content

Combinatorial Identification and Optimization of New Oxide Semiconductors

  • Chapter
  • First Online:
Photoelectrochemical Hydrogen Production

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 102))

Abstract

The “Achilles Heel” of solar energy is the need for storage to allow for energy utilization for transportation and nighttime use. Hydrogen is an ideal energy carrier that can be stored and transported. Therefore, cost-effective generation of hydrogen with sunlight via water photoelectrolysis is the critical breakthrough needed for transition to a renewable energy-based hydrogen economy. A semiconductor-based photoelectrolysis system may have cost advantages over using either a photovoltaic cell coupled to an electrolyzer or solar thermochemical cycles for water splitting. Unfortunately, there is no known semiconducting material or combination of materials with the electronic properties and stability required to efficiently and economically photoelectrolyze water. Semiconducting oxides can have the required stability but present theoretical methods are insufficient to a priori identify materials with the required properties. Most likely, any useful material will be a complex oxide containing many elements whereby each contributes to the required material properties such as light absorption across the solar spectrum, stability, and electrocatalytic activity. The large number of possible multicomponent metal oxides, even if only ternary or quaternary materials are considered, points to the use of high-throughput combinatorial methods to discover and optimize candidate materials. In this chapter, we will review some techniques for the combinatorial production and screening of metal oxides for their ability to efficiently split water with sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We purposely do not include toxic metals such as Pb, Tl, Cd, and Hg since we envision eventual large-scale implementation of any discovered photocatalysts and we want to avoid the environmental consequences of these elements.

References

  1. Ogden, J.M., Williams, R.H.: Electrolytic hydrogen from thin film solar cells. Int. J. Hydrogen Energy 15, 155 (1990)

    Article  Google Scholar 

  2. Boddy, P.J.: Oxygen evolution on potassium tantalate anodes. J. Electrochem. Soc. 115, 199 (1968)

    Article  Google Scholar 

  3. Fujishima, A., Honda, K.: Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bull. Chem. Soc. Jpn. 44, 1148 (1971)

    Article  Google Scholar 

  4. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Article  Google Scholar 

  5. Khaselev, O., Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998)

    Article  Google Scholar 

  6. Rajeshwar, K.: Hydrogen generation at irradiated oxide semiconductor–solution interfaces. J. Appl. Electrochem. 37, 765 (2007)

    Article  Google Scholar 

  7. Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.: Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991 (2002)

    Article  Google Scholar 

  8. Grimes, C.A., Varghese, O.K., Ranjan, S.: Light, water hydrogen. Springer, New York (2008)

    Book  Google Scholar 

  9. Kung, H., Jarrett, H., Sleight, A., Ferretti, A.: Semiconducting oxide anodes in photoassisted electrolysis of water. J. Appl. Phys. 48, 2463 (1977)

    Article  Google Scholar 

  10. Wrighton, M.S., Ellis, A.B., Wolczanski, P.T., Morse, D.L., Abrahamson, H.B., Ginley, D.S.: Strontium titantate photoelectrodes: efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 98, 2774 (1976)

    Article  Google Scholar 

  11. Mavroides, J.G.: In: Heller, A. (ed.) Semiconductor liquid-junction solar cells. The Electrochemical Society, Princeton, NJ (1977)

    Google Scholar 

  12. Watanabe, I., Matsumoto, Y., Sato, E.: Photoelectrochemical properties of the single-crystal SrTiO3 doped in the surface region. J. Electroanal. Chem. 133, 359 (1982)

    Article  Google Scholar 

  13. Mavroides, J.G., Kafalas, J.A., Kolesar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241 (1978)

    Article  Google Scholar 

  14. Nasby, R.D., Quinn, R.K.: Photoassisted electrolysis of water using a BaTiO3 electrode. Mater. Res. Bull. 11, 985 (1976)

    Article  Google Scholar 

  15. Kennedy, J.H., Karl, J., Freese, W.: Photooxidation of water at barium titanate electrodes. J. Electrochem. Soc. 123, 1683 (1976)

    Article  Google Scholar 

  16. Harris, L.A., Wilson, R.H.: Semiconductors for photoelectrolysis. Annu. Rev. Mater. Sci. 8, 99 (1978)

    Article  Google Scholar 

  17. Hodes, G., Fonash, S.T., Heller, A., Miller, B.: In: Gerischer, H. (ed.) Advances in electrochemistry and electrochemical engineering. Wiley, New York (1985)

    Google Scholar 

  18. Rajeshwar, K., Singh, P., Dubow, J.: Energy conversion in photoelectrochemical systems – a review. Electrochim. Acta 23, 1117 (1978)

    Article  Google Scholar 

  19. Fan, F.R.F., White, H.S., Wheeler, B.L., Bard, A.J.: Semiconductor electrodes XXIX. High efficiency photoelectrochemical solar cells with n-WSe2 electrodes in an aqueous iodide medium. J. Electrochem. Soc. 127, 518 (1980)

    Article  Google Scholar 

  20. Heller, A.: Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc. Chem. Res. 14, 154 (1981)

    Article  Google Scholar 

  21. Strehlow, W.H., Cook, E.L.: J. Phys. Chem. Ref. Data 2, 163 (1973)

    Article  Google Scholar 

  22. Levy-Clement, C., Heller, A., Bonner, W.A., Parkinson, B.A.: Spontaneous photoelectrolysis of HBr and HI in two photoelectrode semiconductor liquid junction cells. J. Electrochem. Soc. 129, 1701 (1982)

    Article  Google Scholar 

  23. De, G.C., Roy, A.M., Bhattacharya, S.S.: Effect of n-Si on the photocatalytic production of hydrgen by Pt-loaded CdS and CdS/ZnS catalyst. Int. J. Hydrogen Energy 21, 19 (1996)

    Article  Google Scholar 

  24. Rauh, R.D., Buzby, J.M., Reise, T.F., Alkaitis, S.A.: Design and evolution of new oxide photoanodes for the photoelectroysis of water with solar energy. J. Phys. Chem. 83, 2221 (1979)

    Article  Google Scholar 

  25. Gerischer, H.: Photodecompostion of semiconductors, thermodynamics, kinetics, and applications to solar cells. Faraday Disc. 70, 1A (1980)

    Google Scholar 

  26. Butler, M., Nasby, R., Quinn, R.: Tungsten trioxide as an electrode for photoelectrolysis of water. Solid State Commun. 19, 1011 (1976)

    Article  Google Scholar 

  27. Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914 (1977)

    Article  Google Scholar 

  28. Berak, J.M., Sienko, M.J.: Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J. Solid State Chem. 2, 109 (1970)

    Article  Google Scholar 

  29. Wang, H., Lindgren, T., He, J., Hagfeldt, A., Lindquist, S.-E.: Photolelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: mechanism of electron transport. J. Phys. Chem. B 104, 5686 (2000)

    Article  Google Scholar 

  30. Hardee, K., Bard, A.: Photoelectrochemical behaviour of several polycrystalline metal oxide electrodes in aqueous solutions. J. Electrochem. Soc. 123, 1024 (1976)

    Article  Google Scholar 

  31. Nasby, R., Quinn, R.: Photoassisted electrolysis of water using a BaTiO3 electrode. Mater. Res. Bull. 11, 985 (1976)

    Article  Google Scholar 

  32. Kennedy, J.H., Frese, J.K.W.: Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709 (1978)

    Article  Google Scholar 

  33. McGregor, K.G., Calvin, M., Otvos, J.W.: Photoeffects in Fe2O3 sintered semiconductors. J. Appl. Phys. 50, 369 (1979)

    Article  Google Scholar 

  34. Frelein, R.A., Bard, A.J.: Semiconductor electrodes XXI. The characterization and behavior of n-type Fe2O3 electrodes in acetonitrile solutions. J. Electrochem. Soc. 126, 1892 (1979)

    Article  Google Scholar 

  35. Wilhelm, S.M., Yun, K.S., Ballenger, L.W., Hackerman, N.: Semiconductor properties of iron oxide electrodes. J. Electrochem. Soc. 126, 419 (1979)

    Article  Google Scholar 

  36. Dare-Edwards, M.P., Goodenough, J.B., Hammett, A., Nicholson, N.D.: Photoelectrochemistry of NiO. J. Chem. Soc. Faraday Trans. 77, 643 (1981)

    Article  Google Scholar 

  37. Koffyberg, F.P., Benko, F.A.: A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J. Electrochem. Soc. 128, 2476 (1981)

    Article  Google Scholar 

  38. Nikitine, S., Zielinger, J.P., Coret, A., Zouaghi, M.: Phys. Lett. 18, 105 (1965)

    Article  Google Scholar 

  39. Goodenough, J.B., Hamnett, A., Dare-Edwards, M.P., Campet, G., Wright, R.D.: Inorganic materials for photoelectrolysis. Surface Science 101, 531 (1980)

    Article  Google Scholar 

  40. Ishikawa, A., Takata, T., Kondo, J., Hara, M., Kobayashi, H., Domen, K.: Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation. J. Am. Chem. Soc. 124, 13547 (2002)

    Article  Google Scholar 

  41. Hitoki, G., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K.: Ta3N5 as a novel visible light-driven photocatalyst. Chem. Commun. 1698 (2002).

    Google Scholar 

  42. Liu, M., You, W. Lei, Z., Zhou, G., Yang, J., Wu, G., Ma, G., Luan, G., Takata, T., Hara, M., Domen, K., Li, C.: Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem. Commun. 2192 (2004).

    Google Scholar 

  43. Hitoki, G., Ishikawa, A., Takata, T., Kondo, J., Hara, M., Domen, K.: Ta3N5 as a novel visible light-driven photocatalyst. Chem. Lett. 1, 736 (2002)

    Article  Google Scholar 

  44. Kasahara, A., Nukumizu, K., Hitoki, G., Takata, T., Kondo, J., Hara, M., Kobayashi, H., Domen, K.: Photoreactions on LaTiO2N under visible light irradiation. J. Phys. Chem. A 106, 6750 (2002)

    Article  Google Scholar 

  45. Kasahara, A., Nukumizu, K., Takata, T., Kondo, J., Hara, M., Kobayashi, H., Domen, K.: LaTiO2N as a visible light driven photocatlayst. J. Phys. Chem. B 107, 791 (2003)

    Article  Google Scholar 

  46. Yu, J.C., Zhang, L., Zheng, Z., Zhao, J.: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15, 2280 (2003)

    Article  Google Scholar 

  47. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible light photocatalysts in nitrogen-doped titanium oxides. Science 293, 269 (2001)

    Article  Google Scholar 

  48. Serpone, N.: Is the band Gap of pristine TiO2 narrowed by anion and cation doping of titanium dioxide in second generation photocatalysts. J. Phys. Chem. B 110, 24287 (2006)

    Article  Google Scholar 

  49. Livraghi, S., Paganini, M.C., Giamello, E., Selloni, A., Valentin, C.D., Pacchioni, G.: Origin of photoactivity of nitrogen doped titanium dioxide under visible light. J. Am. Chem. Soc. 128, 15666 (2006)

    Article  Google Scholar 

  50. Bin-Daar, G., Dare-Edwards, M.P., Goodenough, J.B., Hamnett, A.: New anode materials for photolectrolysis. J. Chem. Soc. Faraday Trans. 79, 1199 (1983)

    Article  Google Scholar 

  51. Jarrett, H.S., Sleight, A.W., Kung, H.H., Gillson, J.L.: Photoelectrochemical and solid-state properties of LuRhO3. J. Appl. Phys. 51, 3916–3925 (1980)

    Article  Google Scholar 

  52. Guruswamy, V., Keillor, P., Campbell, G.L., Bockris, J.O.M.: The photoelectrochemical response of the lanthanides of chromium, rhodium, vandium, and gold on a titanium base. Sol. Energ. Mater. Sol. Cell. 4, 11 (1980)

    Article  Google Scholar 

  53. Takata, T., Shinohara, K., Tanaka, A., Hara, M., Kondo, J., Domen, K.: Photocatalytic decomposition of water on spontaneously hydrated layered perovskites. J. Photochem. Photobiol. 106, 45 (1997)

    Article  Google Scholar 

  54. Yoshimura, J., Ebina, Y., Kondo, J., Domen, K.: Visible light induced photocatalytic behavior of a layered perovskite type niobate, RbPb2Nb3O10. J. Phys. Chem. 97, 1970 (1993)

    Article  Google Scholar 

  55. Ghosh, A.K., Maruska, P.: Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes. J. Electrochem. Soc. 124, 1516 (1977)

    Article  Google Scholar 

  56. Kato, H., Kudo, A.: Visible light response and photocatalyltic activities of TiO2 and SrTiO3 photocatalyts Co doped with antimony and chromium. J. Phys. Chem. B 106, 5029 (2002)

    Article  Google Scholar 

  57. Ishii, T., Kato, H., Kudo, A.: H2 evolution from an aqueous methanol solution on SrTiO3 photocatalyts codoped with chromium and tantalum ions under visible light irradiation. J. Photochem. Photobiol. A 163, 181 (2004)

    Article  Google Scholar 

  58. Woodhouse, M., Parkinson, B.A.: Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity. Chem. Mater. 20, 2495 (2008)

    Article  Google Scholar 

  59. Tsuji, I., Kato, H., Kobayashi, H., Kudo, A.: Photocatalytic H2 evolution reaction from aqueous solutions over band controlled AgInxZn2-xS2 solid solution photocatalyts with visible light response and their surface nanostructures J. Am. Chem. Soc. 126, 13406 (2004)

    Article  Google Scholar 

  60. Zou, Z., Ye, J., Sayama, K., Arakawa, H.: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625 (2001)

    Article  Google Scholar 

  61. Kudo, A., Kato, H.: Effect of lanthanide doping into NaTaO3 photocatalyts for efficient water splitting. Chem. Phys. Lett. 331, 373 (2000)

    Article  Google Scholar 

  62. Reddington, E., Sapienza, A., Gurau, B., Viswanathan, R., Sarangapeni, S., Smotkin, E.S., Mallouk, T.E.: Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280, 1735 (1998)

    Article  Google Scholar 

  63. Morris, N.D., Mallouk, T.E.: A high-throughput optical screening method for the optimization of colloidal water oxidation catalysts. J. Am. Chem. Soc. 124, 11114 (2002)

    Article  Google Scholar 

  64. Chen, L., Bao, J., Gao, C.: Combinatorial synthesis of insoluble oxide library from ultrafine/nanoparticle suspension using a drop on demand inkjet delivery system. J. Comb. Chem. 6, 699 (2004)

    Article  Google Scholar 

  65. Woodhouse, M., Herman, G., Parkinson, B.A.: Combinatorial approach to identification of catalysts for the photoelectrolysis of water. Chem. Mater. 17, 4318 (2005)

    Article  Google Scholar 

  66. Katz, J.: Metal oxide based photoelectrochemical cells for solar energy conversion. PhD Thesis, California Institute of Technology, Pasadena, CA (2007)

    Google Scholar 

  67. Arai, T., Konishi, Y., Iwasaki, Y., Sugihara, H., Sayama, K.: High throughput screening using porous photoelectrodes for the development of visible-light responsive semiconductors. J. Comb. Chem. 9, 574 (2007)

    Article  Google Scholar 

  68. Sartoretti, C.J., Alexander, B.D., Solarska, R., Rutkowska, W.A., Augustynski, J., Cerny, R.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109, 13685 (2005)

    Article  Google Scholar 

  69. Kay, A., Cesar, I., Gratzel, M.: A new benchmark for water photooxidation by nanostructured Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006)

    Article  Google Scholar 

  70. Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 2006, 31 (1999)

    Google Scholar 

  71. Mohanty, S., Ghose, J.: Studies on some α-Fe2O3 photoelectrodes. J. Phys. Chem. Solids 53, 81 (1992)

    Article  Google Scholar 

  72. Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., Savvides, N.: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477 (2007)

    Article  Google Scholar 

  73. Arai, T., Konishi, Y., Iwasaki, Y., Sugihara, H., Sayama, K.: High throughput screening using porous photoelectrodes for the development of visible-light responsive semiconductors. J. Comb. Chem. 9, 574 (2007)

    Article  Google Scholar 

  74. Shinar, R., Kennedy, J.H.: Iron oxide photoanaodes. Sol. Energy Mater. 6, 323 (1982)

    Article  Google Scholar 

  75. Leygraf, C., Hendewerk, M., Somorjai, G.A.: Photodissociation of water by p- and n-type polycrystalline iron oxides by using visible light (≤2.7 eV) in the absence of external potential. Proc. Natl. Acad. Sci. U.S.A. 79, 5739 (1982)

    Article  Google Scholar 

  76. Turner, J.E., Hendewerk, M., Parmeter, J., Neiman, D., Somorjai, G.A.: The characterization of doped iron oxide electrodes for the photodissociation of water. J. Electrochem. Soc. 131, 1777 (1984)

    Article  Google Scholar 

  77. Khader, M.M., Vurens, G.H., Kim, I.K., Salmeron, M., Somorjai, G.A.: Photoassisted catalytic dissociation of water to produce hydrogen on partially reduced alpha.-iron(III) oxide. J. Am. Chem. Soc. 109, 3581 (1987)

    Article  Google Scholar 

  78. Bjorksten, U., Moser, J., Gratzel, M.: Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6, 858 (1994)

    Article  Google Scholar 

  79. Duret, A., Gratzel, M.: Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184 (2005)

    Article  Google Scholar 

  80. Aroutiounian, V.M., Arakelyan, V.M., Shahnazaryan, G.E., Stepanyan, G.M., Khachaturyan, E.A., Wang, H., Turner, J.A.: Investigations of the metal-oxide semiconductors promising for photoelectrochemical conversion of solar energy. Sol. Energy 80, 1098 (2006)

    Article  Google Scholar 

  81. Hu, Y.S., Kleiman-Shwarcstein, A., Forman, A.J., Hazen, D., Park, J.N., McFarland, E.W.: Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20, 3803 (2008)

    Article  Google Scholar 

  82. Kleiman-Shwarsctein, A., Hu, Y.S., Forman, A.J., Stucky, G.D., McFarland, E.W.: Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900 (2008)

    Article  Google Scholar 

  83. Cesar, I., Kay, A., Cesar, I., Martinez, J.A.G., Grätzel, M.: Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si doping. J. Am. Chem. Soc. 128, 4582 (2006)

    Article  Google Scholar 

  84. Baeck, S.H., Jaramillo, T.F., Brandli, C., McFarland, E.W.: Combinatorial electrochemical synthesis and characterization of tungsten-based mixed metal oxides. J. Comb. Chem. 4, 563 (2002)

    Article  Google Scholar 

  85. Jaramillo, T.F., Baeck, S.-H., Kleiman-Shwarsctein, A., McFarland, E.W.: Combinatorial electrochemical synthesis and screening of mesoporous ZnO for photocatalysis. Macromol. Rapid Commun. 25, 297 (2004)

    Article  Google Scholar 

  86. Jaramillo, T.F., Baeck, S.-H., Kleiman-Shwarsctein, A., Choi, K.-S., Stucky, G.D., McFarland, E.W.: Automated electrochemical synthesis and photoelectrochemical characterization of Zn-Co-oxide thin films for solar hydrogen production. J. Comb. Chem. 7, 264 (2005)

    Article  Google Scholar 

  87. Jaramillo, T.J., Ivanovskaya, A., McFarland, E.W.: High throughput screening system for catalytic hydrogen producing materials. J. Comb. Chem. 4, 17 (2002)

    Article  Google Scholar 

  88. Seyler, M., Stoewe, K., Maier, W.F.: New hydrogen producing photocatalysts – a combinatorial search. Appl Cat. B 76, 146 (2007)

    Article  Google Scholar 

  89. Lettmann, C., Hinrichs, H., Maier, W.F.: Combinatorial discovery of new photocatalysts for water purification with visible light. Angew. Chem. Int. Ed. 40, 3160 (2001)

    Article  Google Scholar 

  90. Takeuchi, I., Lauterbach, J., Fasolka, M.J.: Combinatorial synthesis and evaluation of functional inorganic materials using thin-film techniques. Mater. Today 8, 18 (2005)

    Article  Google Scholar 

  91. Wang, J., Yoo, Y., Gao, C., Takeuchi, I., Sun, X., Chang, H., Xiang, X.-D., Schultz, P.G.: Identification of a blue photoluminiscent composite material from a combinatorial library. Science 279, 1712 (1998)

    Article  Google Scholar 

  92. Hest, M.F.A.M.v., Dabney, M.S., Perkins, J.D., Ginley, D.S., Taylor, M.P.: Titanium-doped indium oxide: a high-mobility transparent conductor. Appl. Phys. Lett. 87, 032111 (2005).

    Google Scholar 

  93. Hest, M.F.A.M.v., Dabney, M.S., Perkins, J.D., Ginley, D.S.: High-mobility molybdenum doped indium oxide. Thin Solid Films 496, 70 (2006).

    Google Scholar 

  94. Dover, R.B.v., Schneemeyer, L.F., Fleming, R.M.: Discovery of a useful thin-film dielectric using a composition spread approach. Nature 392, 162 (1998).

    Google Scholar 

  95. Dover, R.B.v., Schneemeyer, L.F.: The codeposited composition spread approach to high-throughput discovery/exploration of inorganic materials. Macromol. Rapid Commun. 25, 150 (2004).

    Google Scholar 

  96. Cesar, I., Kay, A., Martinez, J.A.G., Gratzel, M.: Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si doping. J. Am. Chem. Soc. 128, 4582 (2006)

    Article  Google Scholar 

  97. Sartoretti, C.J., Alexander, B.D., Solarska, R., Rutkowska, I.A., Augustynski, J., Cerny, R.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109, 13685 (2005)

    Article  Google Scholar 

  98. Duret, A., Gratzel, M.: Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Parkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Parkinson, B.A. (2012). Combinatorial Identification and Optimization of New Oxide Semiconductors. In: van de Krol, R., Grätzel, M. (eds) Photoelectrochemical Hydrogen Production. Electronic Materials: Science & Technology, vol 102. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1380-6_6

Download citation

Publish with us

Policies and ethics