Skip to main content

Abstract

Abiotic stresses have been considered as the growth-limiting factors affecting plants. Nutrient deficiency, drought, salinity, cold, submergence, and hypoxia are some of the severe types of abiotic stresses. Interdisciplinary research has been carried out to find stress-regulating mechanisms. MicroRNAs (miRNAs) are the newly discovered, 18–24 nucleotides long molecule of the genome. They have been considered as the key players against plant stress. They have been identified in plants, animals, humans, and even microbes. miRNAs have been shown to regulate various stress-responsive genes, proteins and transcription factors, thus helping to counteract adverse conditions. Various stress-inducible miRNAs have been identified and well characterized. Most of these miRNAs have been conserved among plants. This conservative nature has become the basis of development of computational methods of miRNA identifications, in additional to the traditional cloning approach. Presence of computational strategy has further simplified the miRNA prediction. Using this approach various stress-responsive miRNAs have been predicted, annotated and functionally validated from cotton, grapes, rice, maize, and soyabean. This chapter reviews the expanding world of miRNAs, methods unveiling miRNAs from various organisms, and specifically stress-induced miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of Copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen XM, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Datt PB, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–717

    Article  PubMed  CAS  Google Scholar 

  • Boguski MS, Lowe TM, Tolstoshev CM (1993) dbEST – database for “expressed sequence tags”. Nat Genet 4:332–333

    Article  PubMed  CAS  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Long M (2007) A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis. Biotechnol Lett 29:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:1–7

    Article  Google Scholar 

  • Chinnusamy V, Zhu JH, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Sua CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol 107:207–213

    PubMed  CAS  Google Scholar 

  • Devor EJ, Huang L, Abdukarimov A, Abdurakhmonov IY (2009) Methodologies for in vitro cloning OF Small RNAs and application for plant genome(s). Int J Plant Genomics 2009:1–10

    Article  Google Scholar 

  • Dezulian T, Remmert M, Palatnik JF, Weigel D, Huson DH (2006) Identification of plant microRNA homologs. Bioinformatics 22:359–360

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  Google Scholar 

  • Eckardt NA (2004) Small RNA on the move. Plant Cell 16:1951–1954

    Article  CAS  Google Scholar 

  • Erdmann VA, Barciszewska MZ, Hochberg A, De Groot N, Barciszewski J (2001) Regulatory RNAs. Cell Mol Life Sci 58:1–18

    Article  Google Scholar 

  • Fang Q, Xu Z, Song R (2006) Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila. Biochem Biophys Res Commun 347:707–714

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  PubMed  CAS  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Hendrix D, Levine M, Shi W (2010) miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data. Genome Biol 11:39–50

    Article  Google Scholar 

  • Huttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21:289–297

    Article  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stressinduced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  PubMed  CAS  Google Scholar 

  • Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol Cells 19:1–15

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Shibato J, Agrawal GK, Fujihara S, Iwahashi H, Kim DH, Shim IS, Rakwal R (2007) Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol Cells 24:45–59

    PubMed  CAS  Google Scholar 

  • Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau OS, Deng XW, Callis J (2005) Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol 139:1597–1611

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Licausi F, Weits DA, Pant BD, Scheible WR, Geigenberger P, van Dongen JT (2010) Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New Phytol. doi:10.1111/j.1469-8137.2010.03451.x

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  PubMed  CAS  Google Scholar 

  • Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47

    Article  PubMed  CAS  Google Scholar 

  • MacIntosh GC, Wilkerson C, Green PJ (2001) Identification and analysis of Arabidopsis Expressed Sequence Tags characteristic of Non-Coding RNAs. Plant Physiol 127:765–776

    Article  PubMed  CAS  Google Scholar 

  • Manila TM, Riju A, Priya Darshini KL, Chandrasekar A, Eapen SJ (2009) In silico microRNA identification from paprika (Capsicum annuum) ESTs. Nat Proc 3737:1–10

    Google Scholar 

  • Mao Y, Xue X, Chen X (2009) Are small RNAs a big help to plants? Sci China C Life Sci 52:212–223

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, pp 333–347

    Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  • Matukumalli LK, Grefenstette JJ, Sonstegard TS, van Tassell CP (2004) EST-PAGE – managing and analyzing EST data. Bioinformatics 20:286–288

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao XF, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Marteinssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J-K (2008) Criteria for Annotation of Plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova VJ, Bielecka M, Gakière B, Krueger B, Rinder J, Kempa M, Scheible WR, Hesse H, Hoefgen R (2006) Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids 30:173–183

    Article  PubMed  CAS  Google Scholar 

  • Rymarquis LA, Kastenmayer JP, Huttenhofer AG, Green PJ (2008) Diamonds in the rough: mRNA-like non-coding RNAs. Trends Plant Sci 13:329–334

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed  CAS  Google Scholar 

  • Shane MW, McCully ME, Lambers H (2004) Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). J Exp Bot 55:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37–49

    Article  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated MicroRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2007) Micro RNAs and Short-interfering RNAs in Plants. J Int Plant Biol 49:817–826

    Article  CAS  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of MicroRNAs from rice. Plant Cell 17:1397–1411

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  PubMed  CAS  Google Scholar 

  • Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MPS, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593–601

    Article  PubMed  Google Scholar 

  • Szymanski M, Barciszewska MZ, Zywicki M, Barciszewski J (2003) Noncoding RNA transcripts. J Appl Genet 44:1–19

    PubMed  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    Article  PubMed  CAS  Google Scholar 

  • Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033S

    PubMed  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    Article  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanism and regulations. Genes Dev 20:759–771

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Joshi CP, Chiang VL (2000) A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant J 22:495–502

    Article  PubMed  CAS  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1474

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779–9784

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2006) Computational identification of microRNAs and their targets. Comput Biol Chem 30:395–407

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Wang QL, Wang K, Pan XP, Liu F, Guo T, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y (2008) Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in Maize Root Cells. Ann Bot 102:509–519

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29–38

    Article  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guleria, P., Goswami, D., Mahajan, M., Kumar, V., Bhardwaj, J., Yadav, S.K. (2012). MicroRNAs and Their Role in Plants During Abiotic Stresses. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_12

Download citation

Publish with us

Policies and ethics