Skip to main content

Use of Contrast Agents in Children with Chronic Kidney Disease

  • Chapter
  • First Online:
Pediatric Dialysis

Abstract

Contrast media have been used in diagnostic imaging since the late 1800s and have evolved over the decades. Contrast media facilitate the interpretation of medical imaging by increasing the differences seen between body tissues displayed on the images. Through various mechanisms, contrast media influence a tissue or organ’s ability to absorb or reflect energy from electromagnetic radiation or ultrasound. These agents are commonly used with many imaging techniques including conventional radiography, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CIN:

contrast-induced nephropathy

CT:

computed tomography

ESRD:

end-stage renal disease

GCCA:

gadolinium-containing contrast agents

Gd:

gadolinium

GFR:

glomerular filtration rate

HD:

hemodialysis

HOCM:

high-osmolar contrast media

IOCM:

iso-osmolar contrast media

LOCM:

low-osmolar contrast media

MRI:

magnetic resonance imaging

NSF:

nephrogenic systemic fibrosis

PD:

peritoneal dialysis

References

  1. Almen T. Visipaque – a step forward. A historical review. Acta Radiol Suppl. 1995;399:2–18.

    PubMed  CAS  Google Scholar 

  2. Katzberg RW. New and old contrast agents: physiology and nephrotoxicity. Urol Radiol. 1988;10:6–11.

    Article  PubMed  CAS  Google Scholar 

  3. McClennan BL. Ionic versus nonionic contrast media: safety, tolerance, and rationale for use. Urol Radiol. 1989;11:200–2.

    Article  PubMed  CAS  Google Scholar 

  4. Morris TW. X-ray contrast media: where are we now, and where are we going? Radiology. 1993;188: 11–6.

    PubMed  CAS  Google Scholar 

  5. Almén T. Contrast agent design. Some aspects on the synthesis of water soluble contrast agents of low osmolality. J Theor Biol. 1969;24:216–26.

    Article  PubMed  Google Scholar 

  6. Dean PB, Kivisaari L, Kormano M. Contrast enhancement pharmacokinetics of six ionic and nonionic contrast media. Invest Radiol. 1983;18:368–74.

    Article  PubMed  CAS  Google Scholar 

  7. Eloy R, Corot C, Belleville J. Contrast media for angiography: physicochemical properties, pharmacokinetics and biocompatibility. Clin Mater. 1991;7: 89–197.

    Article  PubMed  CAS  Google Scholar 

  8. Rapoport SI, Hori M, Klatzo I. Testing of a hypothesis for osmotic opening of the blood–brain barrier. Am J Physiol. 1972;223:323–31.

    PubMed  CAS  Google Scholar 

  9. Rapoport SI, Levitan H. Neurotoxicity of X-ray contrast media. Relation to lipid solubility and blood–brain barrier permeability. Am J Roentgenol Radium Ther Nucl Med. 1974;122:186–93.

    PubMed  CAS  Google Scholar 

  10. Blaufox MD, Sanderson DR, Tauxe WN, Wakim KG, Orvis AL, Owen Jr CA. Plasmatic diatrizoate-I-131 disappearance and glomerular filtration in the dog. Am J Physiol. 1963;204:536–40.

    PubMed  CAS  Google Scholar 

  11. Donaldson IM. Comparison of the renal clearances of inulin and radioactive diatrizoate (“Hypaque”) as measures of the glomerular filtration rate in man. Clin Sci. 1968;35:513–24.

    PubMed  CAS  Google Scholar 

  12. Mudge GH. The maximal urinary concentration of diatrizoate. Invest Radiol. 1980;15:S67–78.

    Article  PubMed  CAS  Google Scholar 

  13. Katzberg RW, Schulman G, Meggs LG, Caldicott WJ, Damiano MM, Hollenberg NK. Mechanism of the renal response to contrast medium in dogs. Decrease in renal function due to hypertonicity. Invest Radiol. 1983;18:74–80.

    Article  PubMed  CAS  Google Scholar 

  14. Katzberg RW, Pabico RC, Morris TW, Hayakawa K, McKenna BA, Panner BJ, Ventura JA, Fischer HW. Effects of contrast media on renal function and subcellular morphology in the dog. Invest Radiol. 1986; 21:64–70.

    Article  PubMed  CAS  Google Scholar 

  15. Katzberg RW, Donahue LA, Morris TW, Ventura JA, Krutchen AE, Proskin HM, Sovak M, Cos LR. Ioxilan, a third generation low osmolality nonionic contrast medium. Systemic and renal hemodynamic effects. Invest Radiol. 1990;25:46–51.

    Article  PubMed  CAS  Google Scholar 

  16. Nordby A, Tvedt KE, Halgunset J, Haugen OA. Intracellular penetration and accumulation of radiographic contrast media in the rat kidney. Scanning Microsc. 1990;4:651–64.

    PubMed  CAS  Google Scholar 

  17. Lorusso V, Taroni P, Alvino S, Spinazzi A. Pharmacokinetics and safety of iomeprol in healthy volunteers and in patients with renal impairment or end-stage renal disease requiring hemodialysis. Invest Radiol. 2001;36:309–16.

    Article  PubMed  CAS  Google Scholar 

  18. Katzberg RW. Contrast medium-induced nephrotoxicity: which pathway? Radiology. 2005;235:752–5.

    Article  PubMed  Google Scholar 

  19. Persson PB, Tepel M. Contrast medium-induced nephropathy: the pathophysiology. Kidney Int. 2006; 100(Suppl):S8–10.

    Article  CAS  Google Scholar 

  20. Liss P, Nygren A, Erikson U, Ulfendahl HR. Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medulla. Kidney Int. 1998;53:698–702.

    Article  PubMed  CAS  Google Scholar 

  21. Ueda J, Nygren A, Hansell P, Erikson U. Influence of contrast media on single nephron glomerular filtration rate in rat kidney. A comparison between diatrizoate, iohexol, ioxaglate, and iotrolan. Acta Radiol. 1992;33:596–9.

    PubMed  CAS  Google Scholar 

  22. Hardiek K, Katholi RE, Ramkumar V, Deitrick C. Proximal tubule cell response to radiographic contrast media. Am J Physiol Renal Physiol. 2001;280:F61–70.

    PubMed  CAS  Google Scholar 

  23. Hizóh I, Sträter J, Schick CS, Kübler W, Haller C. Radiocontrast-induced DNA fragmentation of renal tubular cells in vitro: role of hypertonicity. Nephrol Dial Transplant. 1998;13:911–8.

    Article  PubMed  Google Scholar 

  24. Heinrich MC, Kuhlmann MK, Grgic A, Heckmann M, Kramann B, Uder M. Cytotoxic effects of ionic high-osmolar, nonionic monomeric, and nonionic iso-osmolar dimeric iodinated contrast media on renal tubular cells in vitro. Radiology. 2005;235:843–9.

    Article  PubMed  Google Scholar 

  25. Thomsen HS, Morcos SK. Radiographic contrast media. BJU Int. 2000;86:1–10.

    Article  PubMed  Google Scholar 

  26. Heydenreich G, Larsen PO. Iododerma after high dose urography in an oliguric patient. Br J Dermatol. 1977;97:567–9.

    Article  PubMed  CAS  Google Scholar 

  27. Goodfellow T, Holdstock GE, Brunton FJ, Bamforth J. Fatal acute vasculitis after high-dose urography with iohexol. Br J Radiol. 1986;59:620–1.

    Article  PubMed  CAS  Google Scholar 

  28. Je C. Iodide “mumps”. N Engl J Med. 1961;264: 987–8.

    Article  Google Scholar 

  29. Rivera M, Teruel JL, Castaño JC, Garcia Otero G, Ortuño J. Iodine-induced ialadenitis: report of 4 cases and review of the literature. Nephron. 1993;63:466–7.

    Article  PubMed  CAS  Google Scholar 

  30. Younathan CM, Kaude JV, Cook MD, Shaw GS, Peterson JC. Dialysis is not indicated immediately after administration of nonionic contrast agents in patients with end-stage renal disease treated by maintenance dialysis. AJR Am J Roentgenol. 1994;163: 969–71.

    PubMed  CAS  Google Scholar 

  31. Hamani A, Petitclerc T, Jacobs C, Deray G. Is dialysis indicated immediately after administration of iodinated contrast agents in patients on haemodialysis? Nephrol Dial Transplant. 1998;13:1051–2.

    Article  PubMed  CAS  Google Scholar 

  32. Harasawa H, Yamazaki C, Masuko K. Side effects and pharmacokinetics of nonionic iodinated contrast medium in hemodialyzed patients. Nippon Igaku Hoshasen Gakkai Zasshi. 1990;50:1524–31.

    PubMed  CAS  Google Scholar 

  33. Kierdorf H, Kindler J, Winterscheid R, Hollmann HJ, Vorwerk D, Speck U. Elimination of the nonionic contrast medium iopromide in end-stage renal failure by hemodialysis. Fortschr Geb Rontgenstrahlen Nuklearmed Erganzungsbd. 1989;128:119–23.

    PubMed  CAS  Google Scholar 

  34. Waaler A, Svaland M, Fauchald P, Jakobsen JA, Kolmannskog F, Berg KJ. Elimination of iohexol, a low osmolar nonionic contrast medium, by hemodialysis in patients with chronic renal failure. Nephron. 1990;56:81–5.

    Article  PubMed  CAS  Google Scholar 

  35. Moon SS, Bäck SE, Kurkus J, Nilsson-Ehle P. Hemodialysis for elimination of the nonionic contrast medium iohexol after angiography in patients with impaired renal function. Nephron. 1995;70:430–7.

    Article  PubMed  CAS  Google Scholar 

  36. Bailie GR, Eisele G, Sala J, Wu D. Determination of iodixanol hemodialysis clearance using a novel in vitro system. Clin Res Regul Aff. 1996;13:111–24.

    Article  Google Scholar 

  37. Ueda J, Furukawa T, Takahashi S, Sakaguchi K. Elimination of ioversol by hemodialysis. Acta Radiol. 1996;37:826–9.

    Article  PubMed  CAS  Google Scholar 

  38. Ueda J, Furukawa T, Higashino K, Takahashi S, Araki Y, Sakaguchi K. Elimination of iomeprol by hemodialysis. Eur J Radiol. 1996;23:197–200.

    Article  PubMed  CAS  Google Scholar 

  39. Johnsson E, Attman PO, Samuelsson O, Haraldsson B. Improved clearance of iohexol with longer haemodialysis despite similar Kt/V for urea. Nephrol Dial Transplant. 1999;14:2407–12.

    Article  PubMed  CAS  Google Scholar 

  40. Matzkies FK, Tombach B, Kisters K, Schuhmann G, Hohage H, Schaefer RM. Clearance of iopromide during haemodialysis with high- and low-flux membranes. Acta Radiol. 1999;40:220–3.

    Article  PubMed  CAS  Google Scholar 

  41. Horiuchi K, Yoshida K, Tsuboi N, Akimoto M, Tajima H, Kumazaki T. Elimination of non-ionic contrast medium by hemodialysis in patients with impaired renal function. Nippon Ika Daigaku Zasshi. 1999;66: 305–7.

    Article  PubMed  CAS  Google Scholar 

  42. Matzkies FK, Reinecke H, Tombach B, Kosch M, Hegger K, Milius M, Hohage H, Kisters K, Kerber S, Schaefer RM. Influence of dialysis procedure, membrane surface and membrane material on iopromide elimination in patients with reduced kidney function. Am J Nephrol. 2000;20:300–4.

    Article  PubMed  CAS  Google Scholar 

  43. Sterner G, Frennby B, Månsson S, Ohlsson A, Prütz KG, Almén T. Assessing residual renal function and efficiency of hemodialysis – an application for urographic contrast media. Nephron. 2000;85:324–33.

    Article  PubMed  CAS  Google Scholar 

  44. Schindler R, Stahl C, Venz S, Ludat K, Krause W, Frei U. Removal of contrast media by different extracorporeal treatments. Nephrol Dial Transplant. 2001;16: 1471–4.

    Article  PubMed  CAS  Google Scholar 

  45. Shinoda T, Hata T, Nakajima K, Yoshimoto H, Niwa A. Time-course of iodine elimination by hemodialysis in patients with renal failure after angiography. Ther Apher. 2002;6:437–42.

    Article  PubMed  CAS  Google Scholar 

  46. Teraoka T, Sugai T, Nakamura S, Hirasawa H, Oda S, Shiga H, Suga M, Yamane S, Ishii H, Yamagata S, Satoh N, Ueda S. Prediction of iopromide reduction rates during haemodialysis using an in vitro dialysis system. Nephrol Dial Transplant. 2005;20:754–9.

    Article  PubMed  CAS  Google Scholar 

  47. Rault RM. Hemodialysis for removal of iodinated contrast media. Int J Artif Organs. 2001;24:331–4.

    PubMed  CAS  Google Scholar 

  48. Donnelly PK, Burwell N, McBurney A, Ward JW, Walls J, Watkin EM. Clearance of iopamidol, a non-ionic contrast medium, by CAPD in patients with end-stage renal failure. Br J Radiol. 1992;65:1108–13.

    Article  PubMed  CAS  Google Scholar 

  49. Iwamoto M, Hiroshige K, Suda T, Ohta T, Ohtani A, Nakashima Y. Elimination of iomeprol in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int. 1999;19:380–5.

    PubMed  CAS  Google Scholar 

  50. Lehnert T, Keller E, Gondolf K, Schäffner T, Pavenstädt H, Schollmeyer P. Effect of haemodialysis after contrast medium administration in patients with renal insufficiency. Nephrol Dial Transplant. 1998;13: 358–62.

    Article  PubMed  CAS  Google Scholar 

  51. Sterner G, Frennby B, Kurkus J, Nyman U. Does post-angiographic hemodialysis reduce the risk of contrast-medium nephropathy? Scand J Urol Nephrol. 2000;34:323–6.

    Article  PubMed  CAS  Google Scholar 

  52. Vogt B, Ferrari P, Schönholzer C, Marti HP, Mohaupt M, Wiederkehr M, Cereghetti C, Serra A, Huynh-Do U, Uehlinger D, Frey FJ. Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful. Am J Med. 2001;111: 692–8.

    Article  PubMed  CAS  Google Scholar 

  53. Frank H, Werner D, Lorusso V, Klinghammer L, Daniel WG, Kunzendorf U, Ludwig J. Simultaneous hemodialysis during coronary angiography fails to prevent radiocontrast-induced nephropathy in chronic renal failure. Clin Nephrol. 2003;60:176–82.

    PubMed  CAS  Google Scholar 

  54. Marenzi G, Marana I, Lauri G, Assanelli E, Grazi M, Campodonico J, Trabattoni D, Fabbiocchi F, Montorsi P, Bartorelli AL. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N Engl J Med. 2003;349:1333–40.

    Article  PubMed  CAS  Google Scholar 

  55. Marenzi G, Lauri G, Campodonico J, Marana I, Assanelli E, De Metrio M, Grazi M, Veglia F, Fabbiocchi F, Montorsi P, Bartorelli AL. Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients. Am J Med. 2006;119:155–62.

    Article  PubMed  Google Scholar 

  56. Hawkins Jr IF, Mladinich CR, Storm B, Croker BP, Wilcox CS, Akins EW, Drake W. Short-term effects of selective renal arterial carbon dioxide administration on the dog kidney. J Vasc Interv Radiol. 1994;5: 149–54.

    Article  PubMed  Google Scholar 

  57. Palm F, Bergqvist D, Carlsson PO, Hellberg O, Nyman R, Hansell P, Liss P. The effects of carbon dioxide versus ioxaglate in the rat kidney. J Vasc Interv Radiol. 2005;16:269–74.

    Article  PubMed  Google Scholar 

  58. Shifrin EG, Plich MB, Verstandig AG, Gomori M. Cerebral angiography with gaseous carbon dioxide CO2. J Cardiovasc Surg (Torino). 1990;31:603–6.

    CAS  Google Scholar 

  59. Dimakakos PB, Stefanopoulos T, Doufas AG, Papasava M, Gouliamos A, Mourikis D, Deligiorgi H. The cerebral effects of carbon dioxide during digital subtraction angiography in the aortic arch and its branches in rabbits. AJNR Am J Neuroradiol. 1998;19: 261–6.

    PubMed  CAS  Google Scholar 

  60. Lambert CR, de Marchena EJ, Bikkina M, Arcement BK. Effects of intracoronary carbon dioxide on left ventricular function in swine. Clin Cardiol. 1996;19: 461–5.

    Article  PubMed  CAS  Google Scholar 

  61. Hawkins IF, Cho KJ, Caridi JG. Carbon dioxide in angiography to reduce the risk of contrast-induced nephropathy. Radiol Clin North Am. 2009;47:813–25.

    Article  PubMed  Google Scholar 

  62. Lorusso V, Pascolo L, Fernetti C, Anelli PL, Uggeri F, Tiribelli C. Magnetic resonance contrast agents: from the bench to the patient. Curr Pharm Des. 2005;11: 4079–98.

    Article  PubMed  CAS  Google Scholar 

  63. Swan SK, Lambrecht LJ, Townsend R, Davies BE, McCloud S, Parker JR, Bensel K, LaFrance ND. Safety and pharmacokinetic profile of gadobenate dimeglumine in subjects with renal impairment. Invest Radiol. 1999;34:443–8.

    Article  PubMed  CAS  Google Scholar 

  64. Hunt CH, Hartman RP, Hesley GK. Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: retrospective review of 456,930 doses. AJR Am J Roentgenol. 2009;193: 1124–7.

    Article  PubMed  Google Scholar 

  65. Murphy KJ, Brunberg JA, Cohan RH. Adverse reactions to gadolinium contrast media: a review of 36 cases. AJR Am J Roentgenol. 1996;167:847–9.

    PubMed  CAS  Google Scholar 

  66. Prince MR, Erel HE, Lent RW, Blumenfeld J, Kent KC, Bush HL, Wang Y. Gadodiamide administration causes spurious hypocalcemia. Radiology. 2003;227: 639–46.

    Article  PubMed  Google Scholar 

  67. Emerson J, Kost G. Spurious hypocalcemia after Omniscan- or OptiMARK-enhanced magnetic resonance imaging: an algorithm for minimizing a false-positive laboratory value. Arch Pathol Lab Med. 2004;128:1151–6.

    PubMed  CAS  Google Scholar 

  68. Niendorf HP, Alhassan A, Geens VR, Clauss W. Safety review of gadopentetate dimeglumine. Extended clinical experience after more than five million applications. Invest Radiol. 1994;29:S179–82.

    Article  PubMed  Google Scholar 

  69. Arsenault TM, King BF, Marsh Jr JW, Goodman JA, Weaver AL, Wood CP, Ehman RL. Systemic gadolinium toxicity in patients with renal insufficiency and renal failure: retrospective analysis of an initial experience. Mayo Clin Proc. 1996;71:1150–4.

    Article  PubMed  CAS  Google Scholar 

  70. Sam 2nd AD, Morasch MD, Collins J, Song G, Chen R, Pereles FS. Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg. 2003;38:313–8.

    Article  PubMed  Google Scholar 

  71. Erley CM, Bader BD, Berger ED, Tuncel N, Winkler S, Tepe G, Risler T, Duda S. Gadolinium-based contrast media compared with iodinated media for digital subtraction angiography in azotaemic patients. Nephrol Dial Transplant. 2004;19:2526–31.

    Article  PubMed  CAS  Google Scholar 

  72. Ergün I, Keven K, Uruç I, Ekmekçi Y, Canbakan B, Erden I, Karatan O. The safety of gadolinium in patients with stage 3 and 4 renal failure. Nephrol Dial Transplant. 2006;21:697–700.

    Article  PubMed  Google Scholar 

  73. Kane GC, Stanson AW, Kalnicka D, Rosenthal DW, Lee CU, Textor SC, Garovic VD. Comparison between gadolinium and iodine contrast for percutaneous intervention in atherosclerotic renal artery stenosis: clinical outcomes. Nephrol Dial Transplant. 2008;23: 1233–40.

    Article  PubMed  CAS  Google Scholar 

  74. Rodby RA. Dialytic therapies to prevent NSF following gadolinium exposure in high-risk patients. Semin Dial. 2008;21:145–9.

    Article  PubMed  Google Scholar 

  75. Okada S, Katagiri K, Kumazaki T, Yokoyama H. Safety of gadolinium contrast agent in hemodialysis patients. Acta Radiol. 2001;42:339–41.

    Article  PubMed  CAS  Google Scholar 

  76. Saitoh T, Hayasaka K, Tanaka Y, Kuno T, Nagura Y. Dialyzability of gadodiamide in hemodialysis patients. Radiat Med. 2006;24:445–51.

    Article  PubMed  CAS  Google Scholar 

  77. Joffe P, Thomsen HS, Meusel M. Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Acad Radiol. 1998;5:491–502.

    Article  PubMed  CAS  Google Scholar 

  78. Jain SM, Wesson S, Hassanein A, Canova E, Hoy M, Fennell RS, Dharnidharka VR. Nephrogenic fibrosing dermopathy in pediatric patients. Pediatr Nephrol. 2004;19:467–70.

    Article  PubMed  Google Scholar 

  79. Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356: 1000–1.

    Article  PubMed  CAS  Google Scholar 

  80. Cowper SE, Su LD, Bhawan J, Robin HS, LeBoit PE. Nephrogenic fibrosing dermopathy. Am J Dermatopathol. 2001;23:383–93.

    Article  PubMed  CAS  Google Scholar 

  81. Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;11:1104–8.

    Google Scholar 

  82. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17:2359–62.

    Article  PubMed  Google Scholar 

  83. High WA, Ayers RA, Cowper SE. Gadolinium is quantifiable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56: 710–2.

    Article  PubMed  Google Scholar 

  84. Boyd AS, Zic JA, Abraham JL. Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol. 2007;56:27–30.

    Article  PubMed  Google Scholar 

  85. Penfield JG, Reilly RF. Nephrogenic systemic fibrosis risk: is there a difference between gadolinium-based contrast agents? Semin Dial. 2008;21:129–34.

    Article  PubMed  Google Scholar 

  86. Penfield JG. Nephrogenic systemic fibrosis and the use of gadolinium-based contrast agents. Pediatr Nephrol. 2008;23:2121–9.

    Article  PubMed  Google Scholar 

  87. Jan F, Segal JM, Dyer J, LeBoit P, Siegfried E, Frieden IJ. Nephrogenic fibrosing dermopathy: two pediatric cases. J Pediatr. 2003;143:678–81.

    Article  PubMed  Google Scholar 

  88. Dharnidharka VR, Wesson SK, Fennell RS. Gadolinium and nephrogenic fibrosing dermopathy in pediatric patients. Pediatr Nephrol. 2007;22(9):1395.

    Article  PubMed  Google Scholar 

  89. Auron A, Shao L, Warady BA. Nephrogenic fibrosing dermopathy in children. Pediatr Nephrol. 2006;21: 1307–11.

    Article  PubMed  Google Scholar 

  90. DiCarlo JB, Gupta EA, Solomon AR. A pediatric case of nephrogenic fibrosing dermopathy: improvement after combination therapy. J Am Acad Dermatol. 2006;54:914–6.

    Article  PubMed  Google Scholar 

  91. Krous HF, Breisch E, Chadwick AE, Pinckney L, Malicki DM, Benador N. Nephrogenic systemic fibrosis with multiorgan involvement in a teenage male after lymphoma, Ewing’s sarcoma, end-stage renal disease, and hemodialysis. Pediatr Dev Pathol. 2007; 10:395–402.

    Article  PubMed  Google Scholar 

  92. Sanchez-Ross M, Snyder R, Colome-Grimmer MI, Blumberg M, Huttenbach Y, Raimer S. Nephrogenic fibrosing dermopathy in a patient with systemic lupus erythematosus and acute lupus nephritis. Pediatr Dermatol. 2007;24:E36–9.

    Article  PubMed  Google Scholar 

  93. Sharma J, Mongia A, Schoenaman M, Chang S, D’Angelo A, Rao M. Nephrogenic fibrosing dermatopathy, cardiac calcification and pulmonary hypertension in an adolescent on chronic hemodialysis. Indian J Nephrol. 2008;18:70–3.

    Article  PubMed  CAS  Google Scholar 

  94. Foss C, Smith JK, Ortiz L, Hanevold C, Davis L. Gadolinium-associated nephrogenic systemic fibrosis in a 9-year-old boy. Pediatr Dermatol. 2009;26: 579–82.

    Article  PubMed  Google Scholar 

  95. Karcaaltincaba M, Oguz B, Haliloglu M. Current status of contrast-induced nephropathy and nephrogenic systemic fibrosis in children. Pediatr Radiol. 2009;3: 382–4.

    Article  Google Scholar 

  96. Steen H, Schwenger V. Good MRI images: to Gad or not to Gad? Pediatr Nephrol. 2007;22:1239–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas R. Dharnidharka MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Araya, C.E., Dharnidharka, V.R. (2012). Use of Contrast Agents in Children with Chronic Kidney Disease. In: Warady, B., Schaefer, F., Alexander, S. (eds) Pediatric Dialysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0721-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0721-8_32

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0720-1

  • Online ISBN: 978-1-4614-0721-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics