Skip to main content

TAM: A Moving Clinical Target

  • Chapter
  • First Online:
Tumour-Associated Macrophages

Abstract

The preceding chapters bear witness to the extensive research undertaken to describe and better understand the roles of TAM, and the molecular mechanisms that contribute to these roles. Successfully translating this knowledge into effective clinical applications is an enormous challenge. Even in the setting of an individual with malignant disease, the majority of macrophages in the body are likely to be performing beneficial, physiological functions. Furthermore, within and surrounding tumours themselves, different macrophage populations are described with various phenotypes, only some of which may be considered maladaptive from the point of view of patient survival. The inherent plasticity of macrophage phenotype adds a further layer of complexity, such that the challenge includes not only targeting the right macrophages in the right place but also at the right time. Whilst certain functional characteristics of TAM appear common in different tumours, distinct differences are well-described, and so optimal approaches are likely to differ depending upon the specific cancer diagnosis. The following review reveals that despite these vast challenges, both established and novel clinical agents exist, which either directly target or indirectly exploit, the presence of TAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13:193–205

    Article  PubMed  CAS  Google Scholar 

  • Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM (2010) Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci USA 107:8363–8368

    Article  PubMed  CAS  Google Scholar 

  • Al-Hallak KM, Azarmi S, Anwar-Mohamed A, Roa WH, Lobenberg R (2010) Secondary cytotoxicity mediated by alveolar macrophages: a contribution to the total efficacy of nanoparticles in lung cancer therapy? Eur J Pharm Biopharm 76:112–119

    Article  PubMed  CAS  Google Scholar 

  • Andreesen R, Scheibenbogen C, Brugger W, Krause S, Meerpohl HG, Leser HG, Engler H, Lohr GW (1990) Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: a new approach to cancer immunotherapy. Cancer Res 50:7450–7456

    PubMed  CAS  Google Scholar 

  • Andreesen R, Hennemann B, Krause SW (1998) Adoptive immunotherapy of cancer using monocyte-derived macrophages: rationale, current status, and perspectives. J Leukoc Biol 64:419–426

    PubMed  CAS  Google Scholar 

  • Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  PubMed  CAS  Google Scholar 

  • Beers SA, French RR, Chan HT, Lim SH, Jarrett TC, Vidal RM, Wijayaweera SS, Dixon SV, Kim H, Cox KL, Kerr JP, Johnston DA, Johnson PW, Verbeek JS, Glennie MJ, Cragg MS (2010) Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 115:5191–5201

    Article  PubMed  CAS  Google Scholar 

  • Ben-Efraim S, Tak C, Romijn JC, Fieren MJ, Bonta IL (1994) Therapeutical effect of activated human macrophages on a human tumor line growing in nude mice. Med Oncol 11:7–12

    Article  PubMed  CAS  Google Scholar 

  • Canioni D, Salles G, Mounier N, Brousse N, Keuppens M, Morchhauser F, Lamy T, Sonet A, Rousselet MC, Foussard C, Xerri L (2008) High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol 26:440–446

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Zheng Q, Katz HE, Guilarte TR (2010) Silica-based nanoparticle uptake and cellular response by primary microglia. Environ Health Perspect 118:589–595

    Article  PubMed  CAS  Google Scholar 

  • Eymard JC, Lopez M, Cattan A, Bouche O, Adjizian JC, Bernard J (1996) Phase I/II trial of autologous activated macrophages in advanced colorectal cancer. Eur J Cancer 32A:1905–1911

    Article  PubMed  CAS  Google Scholar 

  • Faradji A, Bohbot A, Schmitt-Goguel M, Roeslin N, Dumont S, Wiesel ML, Lallot C, Eber M, Bartholeyns J, Poindron P et al (1991a) Phase I trial of intravenous infusion of ex-vivo-activated autologous blood-derived macrophages in patients with non-small-cell lung cancer: toxicity and immunomodulatory effects. Cancer Immunol Immunother 33:319–326

    Article  PubMed  CAS  Google Scholar 

  • Faradji A, Bohbot A, Frost H, Schmitt-Goguel M, Siffert JC, Dufour P, Eber M, Lallot C, Wiesel ML, Bergerat JP et al (1991b) Phase I study of liposomal MTP-PE-activated autologous monocytes administered intraperitoneally to patients with peritoneal carcinomatosis. J Clin Oncol 9:1251–1260

    PubMed  CAS  Google Scholar 

  • Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K, Klasa R, Voss N, Connors JM, Gascoyne RD (2005) Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 106:2169–2174

    Article  PubMed  CAS  Google Scholar 

  • Fidler IJ (1974) Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages. Cancer Res 34:1074–1078

    PubMed  CAS  Google Scholar 

  • Fong CH, Bebien M, Didierlaurent A, Nebauer R, Hussell T, Broide D, Karin M, Lawrence T (2008) An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation. J Exp Med 205:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10:718–726

    Article  PubMed  Google Scholar 

  • Furuichi K, Gao JL, Murphy PM (2006) Chemokine receptor CX3CR1 regulates renal interstitial fibrosis after ischemia-reperfusion injury. Am J Pathol 169:372–387

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 127:2031–2041

    Article  PubMed  CAS  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  PubMed  CAS  Google Scholar 

  • Glennie MJ, French RR, Cragg MS, Taylor RP (2007) Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol 44:3823–3837

    Article  PubMed  CAS  Google Scholar 

  • Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Postlberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjelic-Radisic V, Samonigg H, Tausch C, Eidtmann H, Steger G, Kwasny W, Dubsky P, Fridrik M, Fitzal F, Stierer M, Rucklinger E, Greil R, Marth C (2009) Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 360:679–691

    Article  PubMed  CAS  Google Scholar 

  • Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    Article  PubMed  CAS  Google Scholar 

  • Griffiths L, Binley K, Iqball S, Kan O, Maxwell P, Ratcliffe P, Lewis C, Harris A, Kingsman S, Naylor S (2000) The macrophage - a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7:255–262

    Article  PubMed  CAS  Google Scholar 

  • Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446

    PubMed  CAS  Google Scholar 

  • Hafeman S, London C, Elmslie R, Dow S (2010) Evaluation of liposomal clodronate for treatment of malignant histiocytosis in dogs. Cancer Immunol Immunother 59:441–452

    Article  PubMed  CAS  Google Scholar 

  • Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Hart KM, Bak SP, Alonso A, Berwin B (2009) Phenotypic and functional delineation of murine CX(3)CR1 monocyte-derived cells in ovarian cancer. Neoplasia 11:564–573, 1 p following 573

    PubMed  CAS  Google Scholar 

  • Hennemann B, Scheibenbogen C, Schumichen C, Andreesen R (1995) Intrahepatic adoptive immunotherapy with autologous tumorcytotoxic macrophages in patients with cancer. J Immunother Emphasis Tumor Immunol 18:19–27

    PubMed  CAS  Google Scholar 

  • Hennemann B, Rehm A, Kottke A, Meidenbauer N, Andreesen R (1997) Adoptive immunotherapy with tumor-cytotoxic macrophages derived from recombinant human granulocyte-macrophage colony-stimulating factor (rhuGM-CSF) mobilized peripheral blood monocytes. J Immunother 20:365–371

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Ikeda H, Chauhan D, Okawa Y, Raje N, Podar K, Mitsiades C, Munshi NC, Richardson PG, Carrasco RD, Anderson KC (2009) Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114:1046–1052

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka K, Zenmyo M, Watari K, Iguchi H, Fotovati A, Kimura YN, Hosoi F, Shoda T, Nagata K, Osada H, Ono M, Kuwano M (2008) Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Sci 99:1595–1602

    Article  PubMed  CAS  Google Scholar 

  • Holden CA, Yuan Q, Yeudall WA, Lebman DA, Yang H (2010) Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery. Int J Nanomedicine 5:25–36

    Article  PubMed  CAS  Google Scholar 

  • Illum L, Jones PD, Baldwin RW, Davis SS (1984) Tissue distribution of poly(hexyl 2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts. J Pharmacol Exp Ther 230:733–736

    PubMed  CAS  Google Scholar 

  • Jones R (2000) Rovelizumab (ICOS Corp). IDrugs 3:442–446

    PubMed  CAS  Google Scholar 

  • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  PubMed  CAS  Google Scholar 

  • Lacerna LV Jr, Stevenson GW, Stevenson HC (1988) Adoptive cancer immunotherapy utilizing lymphokine activated killer cells and gamma interferon activated killer monocytes. Pharmacol Ther 38:453–465

    Article  PubMed  CAS  Google Scholar 

  • Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R, Shagdarsuren E, Lira SA, Weissman IL, Weber C, Jung S (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:963–972

    Article  PubMed  CAS  Google Scholar 

  • Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A, Roncalli M, Palumbo GA, Introna M, Golay J (2009) M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J Immunol 182:4415–4422

    Article  PubMed  CAS  Google Scholar 

  • Lopez M, Fechtenbaum J, David B, Martinache C, Chokri M, Canepa S, De Gramont A, Louvet C, Gorin I, Mortel O et al (1991) (1992) Adoptive immunotherapy with activated macrophages grown in vitro from blood monocytes in cancer patients: a pilot study. J Immunother 11:209–217

    Article  Google Scholar 

  • Macdonald KP, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, Kuns R, Pettit AR, Clouston A, Wainwright B, Branstetter D, Smith J, Paxton RJ, Cerretti DP, Bonham L, Hill GR, Hume DA (2010) An antibody against the colony-stimulating factor 1 receptor (CSF1R) depletes the resident subset of monocytes and tissue and tumor-associated macrophages but does not inhibit inflammation. Blood 116(19):3955–3963

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990

    Article  PubMed  CAS  Google Scholar 

  • Meng Y, Beckett MA, Liang H, Mauceri HJ, van Rooijen N, Cohen KS, Weichselbaum RR (2010) Blockade of tumor necrosis factor alpha signaling in tumor-associated macrophages as a radiosensitizing strategy. Cancer Res 70:1534–1543

    Article  PubMed  CAS  Google Scholar 

  • Miselis NR, Wu ZJ, Van Rooijen N, Kane AB (2008) Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 7:788–799

    Article  PubMed  CAS  Google Scholar 

  • Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739

    Article  PubMed  CAS  Google Scholar 

  • Nagashima K, Sasseville VG, Wen D, Bielecki A, Yang H, Simpson C, Grant E, Hepperle M, Harriman G, Jaffee B, Ocain T, Xu Y, Fraser CC (2006) Rapid TNFR1-dependent lymphocyte depletion in vivo with a selective chemical inhibitor of IKKbeta. Blood 107:4266–4273

    Article  PubMed  CAS  Google Scholar 

  • Nishihara K, Barth RF, Wilkie N, Lang JC, Oda Y, Kikuchi H, Everson MP, Lotze MT (1995) Increased in vitro and in vivo tumoricidal activity of a macrophage cell line genetically engineered to express IFN-gamma, IL-4, IL-6, or TNF-alpha. Cancer Gene Ther 2:113–124

    PubMed  CAS  Google Scholar 

  • Stevenson HC, Keenan AM, Woodhouse C, Ottow RT, Miller P, Steller EP, Foon KA, Abrams PG, Beman J, Larson SM et al (1987) Fate of gamma-interferon-activated killer blood monocytes adoptively transferred into the abdominal cavity of patients with peritoneal carcinomatosis. Cancer Res 47:6100–6103

    PubMed  CAS  Google Scholar 

  • Taskinen M, Karjalainen-Lindsberg ML, Nyman H, Eerola LM, Leppa S (2007) A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. Clin Cancer Res 13:5784–5789

    Article  PubMed  CAS  Google Scholar 

  • Van Rooijen N, Sanders A (1996) Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate, propamidine, and ethylenediaminetetraacetic acid. Hepatology 23:1239–1243

    Article  PubMed  Google Scholar 

  • Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Hegmans JP, Aerts JG (2010) Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma. Br J Cancer 103:629–641

    Article  PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Anscher MS, Feng QF, Rabbani ZN, Amin K, Samulski TS, Dewhirst MW, Haroon ZA (2001) Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 50:851–855

    Article  PubMed  CAS  Google Scholar 

  • Wiltrout RH, Brunda MJ, Gorelik E, Peterson ES, Dunn JJ, Leonhardt J, Varesio L, Reynolds CW, Holden HT (1983) Distribution of peritoneal macrophage populations after intravenous injection in mice: differential effects of eliciting and activating agents. J Reticuloendothel Soc 34:253–269

    PubMed  CAS  Google Scholar 

  • Yu YR, Fong AM, Combadiere C, Gao JL, Murphy PM, Patel DD (2007) Defective antitumor responses in CX3CR1-deficient mice. Int J Cancer 121:316–322

    Article  PubMed  CAS  Google Scholar 

  • Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95:272–281

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Hagemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hallam, S., Hagemann, T. (2011). TAM: A Moving Clinical Target. In: Lawrence, T., Hagemann, T. (eds) Tumour-Associated Macrophages. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0662-4_5

Download citation

Publish with us

Policies and ethics