Skip to main content

Abiotic Stress Responses in Plants: Metabolism to Productivity

  • Chapter
  • First Online:
Abiotic Stress Responses in Plants

Abstract

Plants are sessile beings, so the lack of mechanisms to escape from adverse conditions has fostered, through evolution, the development of unique and sophisticated responses to environmental stress. Depending on the degree of plasticity that a plant possesses to deal with a new environmental situation, in response to abiotic stress, morphological, anatomical, and physiological changes may occur. These changes can affect plant growth, productivity in agriculture, metabolic profile, and plant nutritional potential, for example. Therefore, plant abiotic stress has been a matter of concern for the maintenance of human life on earth and especially for the world economy. To meet these challenges, genes, transcripts, proteins, and metabolites that control the architecture and/or stress resistance of crop plants in a wide range of environments will need to be identified, in order to facilitate the biotechnological improvement of crop productivity. The combination of different “omics” tools, which rather than investigating a limited number of substances, enable the large-scale scanning of various substances, offers great potential for postgenomics to elucidate the genotype–phenotype relationships. This chapter is intended to be a synopsis of current knowledge on this regard. It focuses on plant proteome and metabolome affected by abiotic factors. It will include informations on recent advances in methods of omics like proteomics and metabolomics, which should be considered as a new opportunity to understand abiotic responses and identify genes responsible for important crop traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  • Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA Interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Jawa N-S, Lebrun M-H, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10:799–827

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, de Vos CH, Verhoeven HA, Mailiepaard CA, Kruppa G, Bino RJ, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. Omics 6: 217–234

    Article  PubMed  CAS  Google Scholar 

  • Akhond MAY, Machray GC (2008) Biotech crops: technologies, achievements and prospects. Euphytica 166: 47–59

    Article  CAS  Google Scholar 

  • Ali GM, Komatsu S (2006) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5:396–403

    Article  PubMed  CAS  Google Scholar 

  • Altman A (2003) From plant tissue culture to biotechnology: scientific revolutions, abiotic stress tolerance, and forestry. In Vitro Cell Dev Biol Plant 39:75–84

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  PubMed  CAS  Google Scholar 

  • Bais P, Moon SM, He K, Leitão R, Dreher K, Walk T, Sucaet Y, Barkan L, Wohlgemuth G, Roth MR, Wurtele ES, Dixon P, Fiehn O, Lange BM, Shulaev V, Sumner LW, Welti R, Nikolau BJ, Rhee SY, Dickerson JA (2010) Plant metabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol 152:1807–1816

    Article  PubMed  CAS  Google Scholar 

  • Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    Article  PubMed  CAS  Google Scholar 

  • Beer MA, Tavazoie S (2004) Predicting gene expression from sequence. Cell 117:185–198

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27: 411–424

    Article  PubMed  CAS  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  PubMed  CAS  Google Scholar 

  • Bolwell PP, Page A, Piślewska M, Wojtaszek P (2001) Pathogenic infection and the oxidative defences in plant apoplast. Protoplasma 217:20–32

    Article  PubMed  CAS  Google Scholar 

  • Bouchabke O, Chang F, Simon M, Voisin R, Pelletier G, Durand-Tardif M (2008) Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. PLoS One 3:e1705

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bräutigam A, Hoffmann-Benning S, Weber APM (2008) Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific sdaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol 148:568–579

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24:223–231

    Article  PubMed  CAS  Google Scholar 

  • Buckley TN, Mott KA, Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26:1767–1785

    Article  CAS  Google Scholar 

  • Bundy J, Davey M, Viant M (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21

    Article  CAS  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    Article  PubMed  CAS  Google Scholar 

  • Casati P, Zhang X, Burlingame AL, Walbot V (2005) Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity. Mol Cell Proteomics 4:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Caspi R (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516

    Article  PubMed  CAS  Google Scholar 

  • Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci USA 102:14458–14462

    Article  PubMed  CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Chang H-S, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu J (2004) Molecular genetic perspectives on cross - talk and specificity in abiotic stress signalling in plants. J Exp Bot 55: 225–236

    Article  PubMed  CAS  Google Scholar 

  • Cooper K, Farrant JM (2002) Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair. J Exp Bot 53:1805–1813

    Article  PubMed  CAS  Google Scholar 

  • Cox J, Mann M (2007) Is proteomics the new genomics? Cell 130:395–398

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2006) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Simon GM, Yates JR III (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  PubMed  CAS  Google Scholar 

  • de Godoy L, Olsen J, de Souza G, Li G, Mortensen P, Mann M (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol 7:R50

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  CAS  Google Scholar 

  • Des Marais DL, Juenger TE (2010) Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Ann N Y Acad Sci 1206:56–79

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Horling F, König J, Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL, Tjeerdema RS, Jeffery EH, German JB, Ridley WP, Seiber JN (2006) Applications of metabolomics in agriculture. J Agric Food Chem 54:8984–8994

    Article  PubMed  CAS  Google Scholar 

  • Dong C-H, Xia G-X, Hong Y, Ramachandran S, Kost B, Chua N-H (2001) ADF proteins are involved in the control of flowering and regulate f-actin organization, cell expansion, and organ growth in arabidopsis. Plant Cell 13:1333–1346

    Article  PubMed  CAS  Google Scholar 

  • Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103:6518–6523

    Article  PubMed  CAS  Google Scholar 

  • Escobar Galvis ML, Marttila S, Håkansson G, Forsberg J, Knorpp C (2001) Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein. Plant Physiol 126:69–77

    Article  PubMed  CAS  Google Scholar 

  • FAO (Food, Agriculture Organization of the United Nations) (2004) FAO production yearbook. FAO, Rome

    Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Sumner LW, Rhee SY, Ward J, Dickerson J, Lange BM, Lane G, Roessner U, Last R, Nikolau B (2007) Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics 3:195–201

    Article  CAS  Google Scholar 

  • Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase d activity in the resurrection plant craterostigma plantagineum. Plant Cell 12:111–124

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang G (2007) Overexpression of barley hva1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep 26:467–477

    Article  PubMed  CAS  Google Scholar 

  • Gan CS, Chong PK, Pham TK, Wright PC (2007) Technical, experimental, and biological variations in Isobaric Tags for Relative and Absolute Quantitation (iTRAQ). J Proteome Res 6:821–827

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Gerster S, Qeli E, Ahrens CH, Bühlmann P (2010) Protein and gene model inference based on statistical modeling in k-partite graphs. Proc Natl Acad Sci USA 107:12101–12106

    Article  PubMed  CAS  Google Scholar 

  • Gesch RW, Kang I-H, Gallo-Meagher M, Vu JCV, Boote KJ, Allen L, Bowes G (2003) Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated growth CO2 and temperature. Plant Cell Environ 26:1941–1950

    Article  CAS  Google Scholar 

  • Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  PubMed  CAS  Google Scholar 

  • Good DM, Wirtala M, McAlister GC, Coon JJ (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6:1942–1951

    Article  PubMed  CAS  Google Scholar 

  • Görg A, Drews O, Lück C, Weiland F, Weiss W (2009) 2-DE with IPGs. Electrophoresis 30:S122–S132

    Article  PubMed  Google Scholar 

  • Hagel JM, Facchini PJ (2007) Plant metabolomics: analytical platforms and integration with functional genomics. Phytochem Rev 7:479–497

    Article  CAS  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  PubMed  CAS  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6:1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Tang S, Harrison K, Jones JDG (1998) The tomato Cf-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the fungal avirulence gene product Avr9. Plant Cell 10:1251–1266

    Article  PubMed  CAS  Google Scholar 

  • Han X, Jin M, Breuker K, McLafferty FW (2006) Extending Top-Down Mass Spectrometry to proteins with masses greater than 200 kilodaltons. Science 314:109–112

    Article  PubMed  CAS  Google Scholar 

  • Hazen SP, Wu Y, Kreps JA (2003) Gene expression profiling of plant responses to abiotic stress. Funct Integr Genomics 3:105–111

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35:D213–D218

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    Article  PubMed  CAS  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to hetero-geneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723

    Article  PubMed  CAS  Google Scholar 

  • Hongbo S, Zongsuo L, Mingan S, Bochu W (2005) Impacts of PEG-6000 pretreatment for barley (Hordeum vulgare L.) seeds on the effect of their mature embryo in vitro culture and primary investigation on its physiological mechanism. Colloids Surf B Biointerfaces 41:73–77

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Song F, Zheng Z (2006) Molecular characterization and expression analysis of a rice protein phosphatase 2C gene, OsBIPP2C1, and overexpression in transgenic tobacco conferred enhanced disease resistance and abiotic tolerance. Physiol Plant 127:225–236

    Article  CAS  Google Scholar 

  • Hu XJ, Zhang ZB, Xu P, Fu ZY, Hu SB, Song WY (2010) Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. Biol Plantarum 54:213–223

    Article  CAS  Google Scholar 

  • Hummel J, Niemann M, Wienkoop S, Schulze W, Steinhauser D, Selbig J, Walther D, Weckwerth W (2007) ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites. BMC Bioinformatics 8:216

    Article  PubMed  CAS  Google Scholar 

  • Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J, Skøt L (2006) A changing climate for grassland research. New Phytol 169:9–26

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  PubMed  CAS  Google Scholar 

  • Jorrín JV, Rubiales D, Dumas-Gaudot E, Recorbet G, Maldonado A, Castillejo MA, Curto M (2006) Proteomics: a promising approach to study biotic interaction in legumes. A review. Euphytica 147:37–47

    Article  CAS  Google Scholar 

  • Jorrín JV, Maldonado AM, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7:2947–2962

    Article  PubMed  CAS  Google Scholar 

  • Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong J-J (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    Article  PubMed  CAS  Google Scholar 

  • Jyothsnakumari G, Thippeswamy M, Veeranagamallaiah G, Sudhakar C (2009) Differential expression of LEA proteins in two genotypes of mulberry under salinity. Biol Plantarum 53:145–150

    Article  CAS  Google Scholar 

  • Kanehisa M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:277D–280D

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp 101. Plant Mol Biol 51:677–686

    Article  PubMed  CAS  Google Scholar 

  • Katz E, Fon M, Lee YJ, Phinney BS, Sadka A, Blumwald E (2007) The citrus fruit proteome: insights into citrus fruit metabolism. Planta 226:989–1005

    Article  PubMed  CAS  Google Scholar 

  • Kempa S, Krasensky J, Dal Santo S, Kopka J, Jonak C (2008) A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One 3:3935

    Article  CAS  Google Scholar 

  • Keurentjes JJB, Fu J, de Vos CHR, Lommen A, Hall RD, Bino RJ, van der Plas LHW, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nat Genet 38:842–849

    Article  PubMed  CAS  Google Scholar 

  • Khush G (2003) Productivity improvements in rice. Nutr Rev 61:S114–S116

    Article  PubMed  Google Scholar 

  • Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58:415–424

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  PubMed  CAS  Google Scholar 

  • Komatsu S, Zang X, Tanaka N (2006) Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. J Proteome Res 5: 270–276

    Article  PubMed  CAS  Google Scholar 

  • Kristensen C, Morant M, Olsen CE, Ekstrøm CT, Galbraith DW, Lindberg Møller B, Bak S (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci USA 102:1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Kunin WE, Vergeer P, Kenta T, Davey MP, Burke T, Woodward FI, Quick P, Mannarelli M-E, Watson-Haigh NS, Butlin R (2009) Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype. Proc R Soc Lond B Biol Sci 276:1495–1506

    Article  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790

    Article  PubMed  CAS  Google Scholar 

  • Leiss KA, Choi YH, Abdel-Farid IB, Verpoorte R, Klinkhamer PGL (2009) NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids. J Chem Ecol 35:219–229

    Article  PubMed  CAS  Google Scholar 

  • Leitner A, Lindner W (2009) Chemical tagging strategies for mass spectrometry-based phospho-proteomics. Methods Mol Biol 527:229–243

    Article  PubMed  CAS  Google Scholar 

  • Lilley KS, Dupree P (2006) Methods of quantitative proteomics and their application to plant organelle characterization. J Exp Bot 57:1493–1499

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Baird VW (2004) Identification of a novel gene, HAABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid. Am J Bot 91:184–191

    Article  PubMed  CAS  Google Scholar 

  • Liu H-S, Li F-M (2005) Photosynthesis, root respiration, and grain yield of spring wheat in response to surface soil drying. Plant Growth Regul 45:149–154

    Article  CAS  Google Scholar 

  • Lommen A (2009) MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81: 3079–3086

    Article  PubMed  CAS  Google Scholar 

  • Macel M, Van Dam NM, Keurentjes JJB (2010) Metabolomics: the chemistry between ecology and genetics. Mol Ecol Res 10:583–593

    Article  CAS  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94: 481–495

    Article  PubMed  CAS  Google Scholar 

  • Majeran W, Cai Y, Sun Q, Van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17:3111–3140

    Article  PubMed  CAS  Google Scholar 

  • Mano S, Miwa T, S-I N, Mimura T, Nishimura M (2007) The plant organelles database (PODB): a collection of visualized plant organelles and protocols for plant organelle research. Nucleic Acids Res 36:D929–D937

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980

    Article  PubMed  CAS  Google Scholar 

  • May P, Christian N, Ebenhöh O, Weckwerth W, Walther D (2011) Integration of proteomic and metabolomic profiling as well as metabolic modeling for the functional analysis of metabolic networks. Methods Mol Biol 694:341–363

    Article  PubMed  CAS  Google Scholar 

  • McDonald T, Sheng S, Stanley B, Chen D, Ko Y, Cole RN, Pedersen P, Van Eyk JE (2006) Expanding the subproteome of the inner mitochondria using protein separation technologies. Mol Cell Proteomics 5:2392–2411

    Article  PubMed  CAS  Google Scholar 

  • Meng F, Wiener MC, Sachs JR, Burns C, Verma P, Paweletz CP, Mazur MT, Deyanova EG, Yates NA, Hendrickson RC (2007) Quantitative analysis of complex peptide mixtures using FTMS and Differential Mass Spectrometry. J Am Soc Mass Spectrom 18:226–233

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz EM (2002) Plants compared to animals: the broadest comparative study of development. Science 295:1482–1485

    Article  PubMed  CAS  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CHR (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218

    Article  PubMed  CAS  Google Scholar 

  • Moco S, Vervoort J, Bino RJ, De Vos RCH, Bino R (2007) Metabolomics technologies and metabolite identification. TrAC Trends Analyt Chem 26:855–866

    Article  CAS  Google Scholar 

  • Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104:2199–2204

    Article  PubMed  CAS  Google Scholar 

  • Moon JH, Kim SN, Kang BW, Chae YS, Kim JG, Ahn JS, Kim YK, Yang DH, Lee JJ, Kim HJ, Choi YJ, Shin HJ, Chung JS, Cho GJ, Sohn SK (2010) Early onset of acute GVHD indicates worse outcome in terms of severity of chronic GVHD compared with late onset. Bone Marrow Transplant 45:1540–1545

    Article  PubMed  CAS  Google Scholar 

  • Morgenthal K, Wienkoop S, Wolschin F, Weckwerth W (2007) Integrative profiling of metabolites and proteins: improving pattern recognition and biomarker selection for systems level approaches. Methods Mol Biol 358:57–75

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5:4185–4196

    Article  PubMed  CAS  Google Scholar 

  • Nelson CJ, Huttlin EL, Hegeman AD, Harms AC, Sussman MR (2007) Implications of 15N - metabolic labeling for automated peptide identification in Arabidopsis thaliana. Proteomics 7:1279–1292

    Article  PubMed  CAS  Google Scholar 

  • Nesvizhskii AI, Vitek O, Aebersold R (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4:787–797

    Article  PubMed  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  PubMed  CAS  Google Scholar 

  • Orchard S, Hermjakob H (2008) The HUPO proteomics standards initiative – easing communication and minimizing data loss in a changing world. Brief Bioinform 9:166–173

    Article  PubMed  CAS  Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Palmblad M, Mills DJ, Bindschedler LV (2008) Heat-shock response in Arabidopsis thaliana explored by multiplexed quantitative proteomics using differential metabolic labeling. J Proteome Res 7:780–785

    Article  PubMed  CAS  Google Scholar 

  • Qiu Q-S, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu J-K (2004) Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279: 207–215

    Article  PubMed  CAS  Google Scholar 

  • Rácz I, Páldi E, Szalai G, Janda T, Pál M, Lásztity D (2008) S-methylmethionine reduces cell membrane damage in higher plants exposed to low-temperature stress. J Plant Physiol 165:1483–1490

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Liu Y, Yang K-Y, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 105:5638–5643

    Article  PubMed  CAS  Google Scholar 

  • Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Pettolino F (2007) The importance of anatomy and physiology in plant metabolomics. Metabolomics 18:253–278

    Article  CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  PubMed  CAS  Google Scholar 

  • Rossignol M, Peltier J-B, Mock H-P, Matros A, Maldonado AM, Jorrín JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6:5529–5548

    Article  PubMed  CAS  Google Scholar 

  • Ryan D, Robards K (2006) Metabolomics: the greatest omics of them all? Anal Chem 78:7954–7958

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh GH, Komatsu S (2007) Crop proteomics: aim sustainable agriculture of tomorrow. Proteomics 7: 2976–2996

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  PubMed  CAS  Google Scholar 

  • Samis K, Bowley S, McKersie B (2002) Pyramiding Mn - superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Exp Bot 53:1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Sanchez PA, Swaminathan MS (2005) Cutting world hunger in half. Science 307:357–359

    Article  PubMed  CAS  Google Scholar 

  • Schröder S, Zhang H, Yeung ES, Jänsch L, Zabel C, Wätzig H (2008) Quantitative gel electrophoresis: sources of variation. J Proteome Res 7:1226–1234

    Article  PubMed  CAS  Google Scholar 

  • Serrot PH, Sabater B, Martín M (2008) Expression of the ndhCKJ operon of barley and editing at the 13th base of the mRNA of the ndhC gene. Biol Plantarum 52:347–350

    Article  CAS  Google Scholar 

  • Shao H-B, Guo Q-J, Chu L-Y, Zhao X-N, Su Z-L, Hu Y-C, Cheng J-F (2007) Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces 54:37–45

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Jones HD, Halford NG (2008) Plant biotechnology: transgenic crops. Adv Biochem Eng Biotechnol 11:149–186

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 1:139–145

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Siritunga D, Sayre RT (2003) Generation of cyanogen-free transgenic cassava. Planta 217:367–373

    Article  PubMed  CAS  Google Scholar 

  • Skylas DJ, Cordwell SJ, Hains PG, Larsen MR, Basseal DJ, Walsh BJ, Blumenthal C, Rathmell W, Copeland L, Wrigley CW (2002) Heat shock of wheat during grain filling: proteins associated with heat-tolerance. J Cereal Sci 35:175–188

    Article  CAS  Google Scholar 

  • Sokhansanj A, Sadat Noori SA, Niknam V (2006) Comparison of bacterial and plant genes participating in proline biosynthesis with Osmotin gene, with respect to enhancing salinity tolerance of transgenic tobacco plants. Russ J Plant Physiol 53:110–115

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (2003) The role of phylogenetics in comparative genetics. Plant Physiol 132:1790–1800

    Article  PubMed  CAS  Google Scholar 

  • Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221

    Article  CAS  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    PubMed  CAS  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–D974

    Article  PubMed  CAS  Google Scholar 

  • Thurston G, Regan S, Rampitsch C, Xing T (2005) Proteomic and phosphoproteomic approaches to understand plant-pathogen interactions. Physiol Mol Plant Pathol 66:3–11

    Article  CAS  Google Scholar 

  • Tjalsma H, Antelmann H, Jongbloed JDH, Braun PG, Darmon E, Dorenbos R, Dubois J-YF, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM (2004) Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68:207–233

    Article  PubMed  CAS  Google Scholar 

  • Tribl F, Lohaus C, Dombert T, Langenfeld E, Piechura H, Warscheid B, Meyer HE, Marcus K (2008) Towards multidimensional liquid chromatography separation of proteins using fluorescence and isotope-coded protein labelling for quantitative proteomics. Proteomics 8:1204–1211

    Article  PubMed  CAS  Google Scholar 

  • Tseng MJ, Liu C-W, Yiu J-C (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi - Shinozaki K, Shinozaki K (2009) Characterization of the ABA - regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) “Omics” analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  PubMed  CAS  Google Scholar 

  • Van Dam NM, Poppy GM (2008) Why plant volatile ­analysis needs bioinformatics – detecting signal from noise in increasingly complex profiles. Plant Biol 10: 29–37

    Article  PubMed  CAS  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R, Choi YH, Kim HK (2007) NMR-based metabolomics at work in phytochemistry. Phytochem Rev 6:3–14

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64:633–644

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W, Baginsky S, van Wijk K, Heazlewood JL, Millar H (2008) The multinational Arabidopsis steering subcommittee for proteomics assembles the largest proteome database resource for plant systems biology. J Proteome Res 7:4209–4210

    Article  PubMed  CAS  Google Scholar 

  • Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, Velzen EJJ, Duijnhoven JPM, Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89

    Article  CAS  Google Scholar 

  • Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W (2008) Integration of metabolomic and proteomic phenotypes. Mol Cell Proteomics 7:1725–1736

    Article  PubMed  CAS  Google Scholar 

  • Wienkoop S, Baginsky S, Weckwerth W (2010) Arabidopsis thaliana as a model organism for plant proteome research. J Proteomics 73:2239–2248

    Article  PubMed  CAS  Google Scholar 

  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350

    Article  PubMed  CAS  Google Scholar 

  • Wolters DA, Washburn MP, Yates JR (2001) An automatedmultidimensional protein identification technology forshotgun proteomics. Anal Chem 73:5683–5690

    Article  PubMed  CAS  Google Scholar 

  • Wu WW, Wang G, Baek SJ, Shen R-F (2006) Comparative study of three proteomic quantitative methods, DIGE, CICAT, and iTRAQ, using 2D Gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658

    Article  PubMed  CAS  Google Scholar 

  • Wurtele ES, Li L, Berleant D, Cook D, Dickerson JA, Ding J, Hofmann H, Lawrence M, E-k L, Li J, Mentzen W, Miller L, Nikolau BJ, Ransom N, Wang Y (2007) Concepts in plant metabolomics, vol 10. Springer, Dordrecht, The Netherlands, pp 145–157

    Book  Google Scholar 

  • Xu L, Xu Y, Dong A, Sun Y, Pi L, Xu Y, Huang H (2003) Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130:4097–4107

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Nakajima J, Yamanashi M, Sugiyama M, Makita Y, Springob K, Awazuhara M, Saito K (2003a) Metabolomics and differential gene expression in anthocyanin chemo-varietal froms of Perilla frutescens. Phytochemistry 62:987–995

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M, Aimi N, Saito K (2003b) Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry 62:461–470

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Tang Y, Sun C, Su Y, Mao B (2010) STM study on nonionic fluorosurfactant zonyl FSN self-assembly on Au(100): (3/1–1/1) Molecular lattice, corrugations, and adsorbate-enhanced mobility. Langmuir 26: 3829–3834

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49:226–241

    Article  PubMed  CAS  Google Scholar 

  • Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidopsis homologue of map kinase. Plant Cell Physiol 42:1012–1016

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    Article  PubMed  CAS  Google Scholar 

  • Zubarev R, Mann M (2007) On the proper use of mass accuracy in proteomics. Mol Cell Proteomics 6: 377–381

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Furtado Macedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Macedo, A.F. (2012). Abiotic Stress Responses in Plants: Metabolism to Productivity. In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_3

Download citation

Publish with us

Policies and ethics