Skip to main content
Log in

The citrus fruit proteome: insights into citrus fruit metabolism

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Fruit development and ripening are key processes in the production of the phytonutrients that are essential for a balanced diet and for disease prevention. The pathways involved in these processes are unique to plants and vary between species. Climacteric fruit ripening, especially in tomato, has been extensively studied; yet, ripening of non-climacteric fruit is poorly understood. Although the different species share common pathways; developmental programs, physiological, anatomical, biochemical composition and structural differences must contribute to the operation of unique pathways, genes and proteins. Citrus has a non-climacteric fruit ripening behavior and has a unique anatomical fruit structure. For the last few years a citrus genome-wide ESTs project has been initiated and consists of 222,911 clones corresponding to 19,854 contigs and 37,138 singletons. Taking advantage of the citrus database we analyzed the citrus proteome. Using LC-MS/MS we analyzed soluble and enriched membrane fractions of mature citrus fruit to identify the proteome of fruit juice cells. We have identified ca. 1,400 proteins from these fractions by searching NCBI-nr (green plants) and citrus ESTs databases, classified these proteins according to their putative function and assigned function according to known biosynthetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baluska F, Cvrckova F, Kendrick-Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46

    Article  PubMed  CAS  Google Scholar 

  • Bardel J, Louwagie M, Jaquinod M, Jourdain J, Luche S, Rabilloud T, Macherel D, Garin J, Bourguignon J (2002) A survey of the plant mitochondrial proteome in relation to development. Proteomics 2:880–898

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Poole RJ (1987) Salt tolerance in suspension cultures of sugar beet: induction of Na+/H+ antiport activity at the tonoplast by growth in salt. Plant Physiol 83:884–887

    PubMed  CAS  Google Scholar 

  • Bock JB, Matern HT, Peden AA, Scheller RH (2001) A genomic perspective on membrane compartment organization. Nature 409:839–841

    Article  PubMed  CAS  Google Scholar 

  • Boggio SB, Palatnik JF, Heldt HW, Valle EM (2000) Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Sci 159:125–133

    Article  PubMed  CAS  Google Scholar 

  • Bortolotti S, Boggio SB, Delgado L, Orellano EG, Valle EM (2003) Different induction patterns of glutamate metabolizing enzymes in ripening fruits of the tomato mutant green flesh. Physiol Plant 119:384–391

    Article  CAS  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  • Cercos M, Soler G, Iglesias DJ, Gadea J, Forment J, Talon M (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh a proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527

    Article  PubMed  CAS  Google Scholar 

  • Chatre L, Brandizzi F, Hocquellet A, Hawes C, Moreau P (2005) Sec22 and Memb11 are v-SNAREs of the anterograde endoplasmic reticulum-golgi pathway in tobacco leaf epidermal cells. Plant Physiol 139:1244–1254

    Article  PubMed  CAS  Google Scholar 

  • Echeverria E, Burns JK (1990) Sucrose breakdown in relation to fruit growth of acid lime (Citrus aurantifolia). J Exp Bot 41:705–708

    Article  CAS  Google Scholar 

  • Etxeberria E, Baroja-Fernandez E, Munoz FJ, Pozueta-Romero J (2005a) Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol 46:474–481

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Pozueta-Romero J (2005b) Sucrose transport into citrus juice cells: evidence for an endocytic transport system. J Am Soc Hortic Sci 130:269–274

    CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Tomlinson P, Pozueta-Romero J (2005c) Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells. J Exp Bot 56:1905–1912

    Article  PubMed  CAS  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg AJ, Peltier J-B, Rudella A, Sun Q, Wijk KJv (2004) In-depth analysis of the thylakoid membrane proteome of arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499

    Article  PubMed  CAS  Google Scholar 

  • Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43:689–696

    Article  PubMed  CAS  Google Scholar 

  • Gallardo F, Galvez S, Gadal P, Canovas FM (1995) Changes in NADP(+)-linked isocitrate dehydrogenase during tomato fruit ripening—characterization of the predominant cytosolic enzyme from green and ripe pericarp. Planta 196:148–154

    Article  CAS  Google Scholar 

  • Gatlin CL, Kleemann GR, Hays LG, Link AJ, Yates JR (1998) Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry. Anal Biochem 263:93–101

    Article  PubMed  CAS  Google Scholar 

  • Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol 141:685–701

    Article  PubMed  CAS  Google Scholar 

  • Haizel T, Merkle T, Pay A, Fejes E, Nagy F (1997) Characterization of proteins that interact with the GTPbound form of the regulatory GTPase Ran in Arabidopsis. Plant J 11:93–103

    Article  PubMed  CAS  Google Scholar 

  • Hanton SL, Matheson LA, Brandizzi F (2006) Seeking a way out: export of proteins from the plant endoplasmic reticulum. Trends Plant Sci 11:335–343

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH (2004) Experimental analysis of the arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256

    Article  PubMed  CAS  Google Scholar 

  • Holland N, Sala JM, Menezes HC, Lafuente MT (1999) Carbohydrate content and metabolism as related to maturity and chilling sensitivity of cv. fortune mandarins. J Agric Food Chem 47:2513–2518

    Article  PubMed  CAS  Google Scholar 

  • Itaya A, Ma F, Qi Y, Matsuda Y, Zhu Y, Liang G, Ding B (2002) Plasmodesma-mediated selective protein traffic between symplasmically isolated cells probed by a viral movement protein. Plant Cell 14:2071–2083

    Article  PubMed  CAS  Google Scholar 

  • Jurgens G (2004) Membrane trafficking in plants. Annu Rev Cell Dev Biol 20:481–504

    Article  PubMed  CAS  Google Scholar 

  • Katz E, Lagunes PM, Riov J, Weiss D, Goldschmidt EE (2004) Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit. Planta 219:243–252

    Article  PubMed  CAS  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  PubMed  CAS  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  • Koch KE, Avigne WT (1990) Postphloem, nonvascular transfer in citrus: kinetics, metabolism, and sugar gradients. Plant Physiol 93:1405–1416

    Article  PubMed  CAS  Google Scholar 

  • Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53:61–71

    Article  PubMed  CAS  Google Scholar 

  • Kruft V, Eubel H, Jansch L, Werhahn W, Braun H-P (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127:1694–1710

    Article  PubMed  CAS  Google Scholar 

  • Kuhn C, Hajirezaei M-R, Fernie AR, Roessner-Tunali U, Czechowski T, Hirner B, Frommer WB (2003) The sucrose transporter stsut1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol 131:102–113

    Article  PubMed  CAS  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    Article  PubMed  CAS  Google Scholar 

  • Lister R, Chew O, Lee M-N, Heazlewood JL, Clifton R, Parker KL, Millar AH, Whelan J (2004) A transcriptomic and proteomic characterization of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction. Plant Physiol 134:777–789

    Article  PubMed  CAS  Google Scholar 

  • Lonosky PM, Zhang X, Honavar VG, Dobbs DL, Fu A, Rodermel SR (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134:560–574

    Article  PubMed  CAS  Google Scholar 

  • Lowell CA, Tomlinson PT, Koch KE (1989) Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol 90:1394–1402

    PubMed  CAS  Google Scholar 

  • Maltman DJ, Simon WJ, Wheeler CH, Dunn MJ, Wait R, Slabas AR (2002) Proteomic analysis of the endoplasmic reticulum from developing and germinating seed of castor (Ricinus communis). Electrophoresis 23:626–639

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Sweetlove LJ, Giege P, Leaver CJ (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 127:1711–1727

    Article  PubMed  CAS  Google Scholar 

  • Molendijk AJ, Ruperti B, Palme K (2004) Small GTPases in vesicle trafficking. Curr Opin Plant Biol 7:694–700

    Article  PubMed  CAS  Google Scholar 

  • Müller ML, Irkens-Kiesecker U, Kramer D, Taiz L (1997) Purification and reconstitution of the vacuolar H+-ATPases from lemon fruits and epicotyls. J Biol Chem 272:12762–12770

    Article  PubMed  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Turgeon R (1999) Sieve elements and companion cells-traffic control centers of the phloem. Plant Cell 11:739–750

    Article  PubMed  CAS  Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol 48:191–222

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12:319–341

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Pracharoenwattana I, Cornah JE, Smith SM (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17:2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Pratelli R, Sutter JU, Blatt MR (2004) A new catch in the SNARE. Trends Plant Sci 9:187–195

    Article  PubMed  CAS  Google Scholar 

  • Roberts AG, Cruz SS, Roberts IM, Prior D, Turgeon R, Oparka KJ (1997) Phloem unloading in sink leaves of Nicotiana Benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9:1381–1396

    Article  PubMed  CAS  Google Scholar 

  • Ruan Y-L, Patrick JW (1995) The cellular pathway of postphloem sugar transport in developing tomato fruit. Planta V196:434–444

    Google Scholar 

  • Sadka A, Dahan E, Cohen L, Marsh KB (2000a) Aconitase activity and expression during the development of lemon fruit. Physiol Plant 108:255–262

    Article  CAS  Google Scholar 

  • Sadka A, Dahan E, Or E, Cohen L (2000b) NADP(+)-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci 158:173–181

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124:1558–1569

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Nakano R, Shulaev V, Sadka A, Blumwald E (2006) Vacuolar citrate/H+ symporter of citrus juice cells. Planta 224:472–480

    Article  PubMed  CAS  Google Scholar 

  • Slabas AR, Ndimba B, Simon WJ, Chivasa S (2004) Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Biochem Soc Trans 32:524–528

    Article  PubMed  CAS  Google Scholar 

  • Spiegel-Roy P, Goldschmidt EE (1996) Biology of citrus. Cambridge University Press, Cambridge

    Google Scholar 

  • Surpin M, Raikhel N (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5:100–109

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Fujita M, Handa H, Murayama S, Uemura M, Kawamura Y, Mitsui T, Mikami S, Tozawa Y, Yoshinaga T, Komatsu S (2004) Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments. Mol Genet Genomics 271:566–576

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson PT, Duke ER, Nolte KD, Koch KE (1991) Sucrose synthase and invertase in isolated vascular bundles. Plant Physiol 97:1249–1252

    PubMed  CAS  Google Scholar 

  • Uemura T, Ueda T, Ohniwa RL, Nakano AKT, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-golgi network in plant cells. Cell Struct Func 29:49–65

    Article  CAS  Google Scholar 

  • Vandercook CE (1977) Organic acids. In: Nagy S, Shaw PE, Veldhius MK (eds) Citrus fruit technology. Avi Publishing, Westport, CT, pp 209–227

    Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  PubMed  CAS  Google Scholar 

  • Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ (2001) Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 13:385–398

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Xu YY, Han Y, Bao SL, Du JZ, Yuan M, Xu ZH, Chong K (2006) Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin. Plant Physiol 140:91–101

    Article  PubMed  CAS  Google Scholar 

  • Wheeler MCG, Tronconi MA, Drincovich MF, Andreo CS, Flugge U-I, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139:39–51

    Article  PubMed  CAS  Google Scholar 

  • Ytterberg AJ, Peltier J-B, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    Article  PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  • Zhang L-Y, Peng Y-B, Pelleschi-Travier S, Fan Y, Lu Y-F, Lu Y-M, Gao X-P, Shen Y-Y, Delrot S, Zhang D-P (2004) Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol 135:574–586

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant No. 5000-117 from the California Citrus Research Board, by a Research Grant No. US-3575-04R from BARD, the United States-Israel Binational Agricultural Research and Development Fund, and by the Will W. Lester Endowment, University of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Blumwald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1(XLS 4.3 Mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, E., Fon, M., Lee, Y.J. et al. The citrus fruit proteome: insights into citrus fruit metabolism. Planta 226, 989–1005 (2007). https://doi.org/10.1007/s00425-007-0545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0545-8

Keywords

Navigation