Skip to main content

Understanding the Role of Natural Killer T Cells in Hematologic Malignancies: Progress and Challenges

  • Chapter
  • First Online:
Natural Killer T cells

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1058 Accesses

Abstract

Natural Killer T (NKT) cells have emerged as important effector cells in tumor immunity. Hematologic malignancies are particularly attractive targets of NKT mediated anti-tumor effects as most hematologic tumors express CD1d. Patients with several hematologic malignancies have been reported to carry quantitative or qualitative defects in NKT cells. Preliminary clinical studies suggest the capacity of alpha-galactosylceramide (α-GalCer) loaded dendritic cells to stimulate NKT cells in vivo. However harnessing the effects of NKT cells in the clinic will also require attention to reversing the defects in NKT function in vivo. Improved understanding of the cross-talk between type I and II NKT cells, as well as the nature of naturally occurring CD1d binding ligands in these patients is needed to optimally target NKT cells in patients with hematologic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Berzofsky JA, Terabe M. The contrasting roles of NKT cells in tumor immunity. Curr Mol Med. 2009;9:667–672.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DI, Pellicci DG, Patel O, Kjer-Nielsen L, McCluskey J, Rossjohn J. Antigen recognition by CD1d-restricted NKT T cell receptors. Semin Immunol. 2011;22:61–67.

    Article  Google Scholar 

  • Munz C, Steinman RM, Fujii S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med. 2005;202:203–207.

    Article  PubMed  Google Scholar 

  • Wu L, Van Kaer L. Natural killer T cells in health and disease. Front Biosci (Schol Ed). 2010;3:236–251.

    Article  Google Scholar 

  • Dhodapkar MV. Harnessing human CD1d restricted T cells for tumor immunity: progress and challenges. Front Biosci. 2009;14:796–807.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DI, Kronenberg M. Going both ways: Immune regulation via CD1d-dependent NKT cells. J Clin Invest. 2004;114:1379–1388.

    PubMed  CAS  Google Scholar 

  • Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what’s in a name? Nat Rev Immunol. 2004;4:231–237.

    Article  PubMed  CAS  Google Scholar 

  • Gumperz JE, Miyake S, Yamamura T, Brenner MB. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med. 2002;195:625–636.

    Article  PubMed  CAS  Google Scholar 

  • Lee PT, Benlagha K, Teyton L, Bendelac A. Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med. 2002;195:637–641.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A. Mouse NK1+ T cells. Curr Opin Immunol. 1995;7:367–374.

    Article  PubMed  CAS  Google Scholar 

  • Crowe NY, Coquet JM, Berzins SP, et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med. 2005;202:1279–1288.

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Hemmi H, Steinman RM. Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev. 2007;220:183–198.

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Berzofsky JA. NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol. 2007;28:491–496.

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Crowe NY, Hayakawa Y, Takeda K, Yagita H, Godfrey DI. NKT cells - conductors of tumor immunity? Curr Opin Immunol. 2002;14:165–171.

    Article  PubMed  CAS  Google Scholar 

  • Crowe NY, Smyth MJ, Godfrey DI. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med. 2002;196:119–127.

    Article  PubMed  CAS  Google Scholar 

  • Crowe NY, Uldrich AP, Kyparissoudis K, et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J Immunol. 2003;171:4020–4027.

    PubMed  CAS  Google Scholar 

  • Hayakawa Y, Rovero S, Forni G, Smyth MJ. Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci USA. 2003;100:9464–9469.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Takeda K, Yagita H, et al. IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood. 2002;100:1728–1733.

    PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol. 2002;3:867–874.

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Hemmi H, et al. Glycolipid alpha-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc Natl Acad Sci USA. 2006;103:11252–11257.

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med. 2003;198:267–279.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura H, Iwakabe K, Yahata T, et al. The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med. 1999;189:1121–1128.

    Article  PubMed  CAS  Google Scholar 

  • Song L, Asgharzadeh S, Salo J, et al. Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest. 2009;119:1524–1536.

    Article  PubMed  CAS  Google Scholar 

  • De Santo C, Salio M, Masri SH, et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest. 2008;118:4036–4048.

    Article  PubMed  Google Scholar 

  • Terabe M, Matsui S, Noben-Trauth N, et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol. 2000;1:515–520.

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Matsui S, Park JM, et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 2003;198:1741–1752.

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Geller MD, Chang DH, et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med. 2003;197:1667–1676.

    Article  PubMed  CAS  Google Scholar 

  • Neparidze N, Dhodapkar MV. Harnessing CD1d-restricted T cells toward antitumor immunity in humans. Ann N Y Acad Sci. 2009;1174:61–67.

    Article  PubMed  CAS  Google Scholar 

  • Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leuk. 2003;17:1068–1077.

    Article  CAS  Google Scholar 

  • Takahashi T, Haraguchi K, Chiba S, Yasukawa M, Shibata Y, Hirai H. Valpha24+ natural killer T-cell responses against T-acute lymphoblastic leukaemia cells: implications for immunotherapy. Br J Haematol. 2003;122:231–239.

    Article  PubMed  Google Scholar 

  • Fais F, Morabito F, Stelitano C, et al. CD1d is expressed on B-chronic lymphocytic leukemia cells and mediates alpha-galactosylceramide presentation to natural killer T lymphocytes. Int J Cancer. 2004;109:402–411.

    Article  PubMed  CAS  Google Scholar 

  • Stoiber D, Kovacic B, Schuster C, et al. TYK2 is a key regulator of the surveillance of B lymphoid tumors. J Clin Invest. 2004;114:1650–1658.

    PubMed  CAS  Google Scholar 

  • Yoneda K, Morii T, Nieda M, et al. The peripheral blood Valpha24+ NKT cell numbers decrease in patients with haematopoietic malignancy. Leuk Res. 2005;29:147–152.

    Article  PubMed  CAS  Google Scholar 

  • Chan AC, Neeson P, Leeansyah E, et al. (2010) Testing the NKT cell hypothesis in lenalidomide-treated myelodysplastic syndrome patients. Leuk;24:592–600.

    Google Scholar 

  • Xu C, de Vries R, Visser L, et al. (2010) Expression of CD1d and presence of invariant NKT cells in classical Hodgkin lymphoma. Am J Hematol;85:539–541.

    Google Scholar 

  • Imataki O, Heike Y, Makiyama H, et al. Insufficient ex vivo expansion of Valpha24(+) natural killer T cells in malignant lymphoma patients related to the suppressed expression of CD1d molecules on CD14(+) cells. Cytotherapy. 2008;10:497–506.

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi K, Takahashi T, Nakahara F, et al. CD1d expression level in tumor cells is an important determinant for anti-tumor immunity by natural killer T cells. Leuk Lymphoma. 2006;47:2218–2223.

    Article  PubMed  CAS  Google Scholar 

  • Song W, van der Vliet HJ, Tai YT, et al. Generation of antitumor invariant natural killer T cell lines in multiple myeloma and promotion of their functions via lenalidomide: a strategy for immunotherapy. Clin Cancer Res. 2008;14:6955–6962.

    Article  PubMed  CAS  Google Scholar 

  • Spanoudakis E, Hu M, Naresh K, et al. Regulation of multiple myeloma survival and progression by CD1d. Blood. 2009;113:2498–2507.

    Article  PubMed  CAS  Google Scholar 

  • Exley MA, Tahir SM, Cheng O, et al. A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J Immunol. 2001;167:5531–5534.

    PubMed  CAS  Google Scholar 

  • Chang DH, Deng H, Matthews P, et al. Inflammation associated lysophospholipids as ligands for CD1d restricted T cells in human cancer. Blood. 2008;112:1308–1316.

    Article  PubMed  CAS  Google Scholar 

  • Salio M, Cerundolo V. Linking inflammation to natural killer T cell activation. PLoS Biol. 2009;7:e1000226.

    Article  PubMed  Google Scholar 

  • Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346:564–569.

    Article  PubMed  Google Scholar 

  • Dhodapkar MV. Harnessing host immune responses to preneoplasia: promise and challenges. Cancer Immunol Immunother. 2004;54:409–413.

    Article  PubMed  Google Scholar 

  • Rosenbloom BE, Weinreb NJ, Zimran A, Kacena KA, Charrow J, Ward E. Gaucher disease and cancer incidence: a study from the Gaucher registry. Blood. 2005.

    Google Scholar 

  • Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011;11:131–142.

    Article  PubMed  CAS  Google Scholar 

  • Hegde S, Fox L, Wang X, Gumperz JE. Autoreactive natural killer T cells: promoting immune protection and immune tolerance through varied interactions with myeloid antigen-presenting cells. Immunology. 2010;130:471–483.

    Article  PubMed  CAS  Google Scholar 

  • Brutkiewicz RR. CD1d ligands: the good, the bad, and the ugly. J Immunol. 2006;177:769–775.

    PubMed  CAS  Google Scholar 

  • Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med. 2004;199:947–957.

    Article  PubMed  CAS  Google Scholar 

  • Van Rhijn I, Young DC, Im JS, et al. CD1d-restricted T cell activation by nonlipidic small molecules. Proc Natl Acad Sci USA. 2004;101:13578–13583.

    Article  PubMed  Google Scholar 

  • Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB. Cross-presentation of Disialoganglioside GD3 to Natural Killer T Cells. J Exp Med. 2003;198:173–181.

    Article  PubMed  CAS  Google Scholar 

  • Yuan W, Kang SJ, Evans JE, Cresswell P. Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. J Immunol. 2009;182:4784–4791.

    Article  PubMed  CAS  Google Scholar 

  • Im JS, Arora P, Bricard G, et al. Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity. 2009;30:888–898.

    Article  PubMed  CAS  Google Scholar 

  • Gumperz JE, Roy C, Makowska A, et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity. 2000;12:211–221.

    Article  PubMed  CAS  Google Scholar 

  • Cox D, Fox L, Tian R, et al. Determination of cellular lipids bound to human CD1d molecules. PLoS One. 2009;4:e5325.

    Article  PubMed  Google Scholar 

  • Fox LM, Cox DG, Lockridge JL, et al. Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol. 2009;7:e1000228.

    Article  PubMed  Google Scholar 

  • Wang X, Chen X, Rodenkirch L, et al. Natural killer T-cell autoreactivity leads to a specialized activation state. Blood. 2008;112:4128–4138.

    Article  PubMed  CAS  Google Scholar 

  • Chang DH, Osman K, Connolly J, et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of {alpha}-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med. 2005;201:1503–1517.

    Article  PubMed  CAS  Google Scholar 

  • Giaccone G, Punt CJ, Ando Y, et al. A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res. 2002;8:3702–3709.

    PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Steinman RM, Dhodapkar MV. Detection and activation of human Valpha24+ natural killer T cells using alpha-galactosyl ceramide-pulsed dendritic cells. J Immunol Methods. 2003;272:147–159.

    Article  PubMed  CAS  Google Scholar 

  • Chang DH, Liu N, Klimek V, et al. Enhancement of ligand dependent activation of human Natural Killer T cells by Lenalidomide: Therapeutic Implications. Blood. 2006;108:618–621.

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Stock P, Akbari O. Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy. 2010;66:155–162.

    Article  PubMed  Google Scholar 

  • van den Heuvel MJ, Garg N, Van Kaer L, Haeryfar SM. NKT cell costimulation: experimental progress and therapeutic promise. Trends Mol Med. 2010;17:65–77.

    Article  PubMed  Google Scholar 

  • Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR. Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood. 2008;111:5637–5645.

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Nakayama T, Kamada N, et al. Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res. 1999;59:5102–5105.

    PubMed  CAS  Google Scholar 

  • Moreno M, Molling JW, von Mensdorff-Pouilly S, et al. IFN-gamma-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. J Immunol. 2008;181:2446–2454.

    PubMed  CAS  Google Scholar 

  • Chung Y, Qin H, Kang CY, Kim S, Kwak LW, Dong C. An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood. 2007;110:2013–2019.

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Klimek V, Geller MD, Nimer SD, Dhodapkar MV. Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol. 2003;122:617–622.

    Article  PubMed  Google Scholar 

  • Zeng W, Maciejewski JP, Chen G, et al. Selective reduction of natural killer T cells in the bone marrow of aplastic anaemia. Br J Haematol. 2002;119:803–809.

    Article  PubMed  Google Scholar 

  • Nicol A, Nieda M, Koezuka Y, et al. Human invariant valpha24+ natural killer T cells activated by alpha-galactosylceramide (KRN7000) have cytotoxic anti-tumour activity through mechanisms distinct from T cells and natural killer cells. Immunology. 2000;99:229–234.

    Article  PubMed  CAS  Google Scholar 

  • Nieda M, Nicol A, Koezuka Y, et al. TRAIL expression by activated human CD4(+)V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood. 2001;97:2067–2074.

    Article  PubMed  CAS  Google Scholar 

  • Metelitsa LS, Naidenko OV, Kant A, et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol. 2001;167:3114–3122.

    PubMed  CAS  Google Scholar 

  • Kohrt HE, Pillai AB, Lowsky R, Strober S (2010) NKT cells, Treg, and their interactions in bone marrow transplantation. Eur J Immunol;40:1862–1869.

    Google Scholar 

  • Pillai AB, George TI, Dutt S, Teo P, Strober S. Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J Immunol. 2007;178:6242–6251.

    PubMed  CAS  Google Scholar 

  • Zeng D, Lewis D, Dejbakhsh-Jones S, et al. Bone marrow NK1.1(−) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med. 1999;189:1073–1081.

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Verneris MR, Ito M, Shizuru JA, Negrin RS. Expansion of cytolytic CD8(+) natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon gamma production. Blood. 2001;97:2923–2931.

    Article  PubMed  CAS  Google Scholar 

  • Seino KI, Fukao K, Muramoto K, et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci USA. 2001;98:2577–2581.

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi K, Takahashi T, Hiruma K, et al. Recovery of Valpha24+ NKT cells after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2004;34:595–602.

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi K, Takahashi T, Matsumoto A, et al. Host-residual invariant NK T cells attenuate graft-versus-host immunity. J Immunol. 2005;175:1320–1328.

    PubMed  CAS  Google Scholar 

  • Hashimoto D, Asakura S, Miyake S, et al. Stimulation of host NKT cells by synthetic glycolipid regulates acute graft-versus-host disease by inducing Th2 polarization of donor T cells. J Immunol. 2005;174:551–556.

    PubMed  CAS  Google Scholar 

  • Xiao W, Li L, Zhou R, et al. EBV-induced human CD8(+) NKT cells synergise CD4(+) NKT cells suppressing EBV-associated tumours upon induction of Th1-bias. Cell Mol Immunol. 2009;6:367–379.

    PubMed  CAS  Google Scholar 

  • Yuling H, Ruijing X, Li L, et al. EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res. 2009;69:7935–7944.

    Article  PubMed  Google Scholar 

  • Bendelac A, Medzhitov R. Adjuvants of immunity: harnessing innate immunity to promote adaptive immunity. J Exp Med. 2002;195:F19-23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MVD is supported in part by funds from the NIH and Leukemia Society. NN was supported in part by an NIH training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhav V. Dhodapkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neparidze, N., Dhodapkar, M.V. (2012). Understanding the Role of Natural Killer T Cells in Hematologic Malignancies: Progress and Challenges. In: Terabe, M., Berzofsky, J. (eds) Natural Killer T cells. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0613-6_9

Download citation

Publish with us

Policies and ethics