Skip to main content

Advertisement

Log in

Harnessing host immune responses to preneoplasia: promise and challenges

  • Opinion Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Preneoplastic lesions are more common than clinical cancer and define a population at increased risk for the development of malignancy. Recent studies suggest that the immune system has the capacity to recognize these lesions, and enrichment of preneoplasia-specific immune effectors can be detected in the tumor bed of some preneoplastic lesions such as monoclonal gammopathies. Here, I discuss the promise and challenges of harnessing the immune response against preneoplasia. Approaches to boost the natural host response to these lesions may have a major impact on reducing net cancer burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  3. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette P, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A 100:5974–5979

    Article  CAS  PubMed  Google Scholar 

  4. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  CAS  PubMed  Google Scholar 

  5. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA, Kyle RA, Gertz MA, Greipp PR, Dewald GW (2002) Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 100:1417–1424

    CAS  PubMed  Google Scholar 

  6. Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2:175–187

    Article  CAS  PubMed  Google Scholar 

  7. Radisky DC, Bissell MJ (2004) Cancer: respect thy neighbor! Science 303:775–777

    Google Scholar 

  8. Kyle RA, Rajkumar SV (1999) Monoclonal gammopathies of undetermined significance. Hematol Oncol Clin North Am 13:1181–1202

    CAS  PubMed  Google Scholar 

  9. Dhodapkar MV, Krasovsky J, Olson K (2002) T cells from the tumor microenvironment of patients with progressive myeloma can generate strong tumor specific cytolytic responses to autologous tumor loaded dendritic cells. Proc Natl Acad Sci U S A 99:13009–13013

    Article  CAS  PubMed  Google Scholar 

  10. Dhodapkar MV, Krasovsky J, Osman K, Geller MD (2003) Vigorous premalignancy specific effector T cell response in the bone marrow of patients with preneoplastic gammopathy. J Exp Med 198:1753–1757

    Article  CAS  PubMed  Google Scholar 

  11. Guerry DT, Alexander MA, Elder DE, Herlyn MF (1987) Interferon-gamma regulates the T cell response to precursor nevi and biologically early melanoma. J Immunol 139:305–312

    CAS  PubMed  Google Scholar 

  12. Kao H, Marto JA, Hoffmann TK, Shabanowitz J, Finkelstein SD, Whiteside TL, Hunt DF, Finn OJ (2001) Identification of cyclin B1 as a shared human epithelial tumor-associated antigen recognized by T cells. J Exp Med 194:1313–1323

    Article  CAS  PubMed  Google Scholar 

  13. Soria JC, Jang SJ, Khuri FR, Hassan K, Liu D, Hong WK, Mao L (2000) Overexpression of cyclin B1 in early-stage non-small cell lung cancer and its clinical implication. Cancer Res 60:4000–4004

    CAS  PubMed  Google Scholar 

  14. Finn OJ (2003) Premalignant lesions as targets for cancer vaccines. J Exp Med 198:1623–1626

    Article  CAS  PubMed  Google Scholar 

  15. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  16. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFN-gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  CAS  PubMed  Google Scholar 

  17. Prehn RT (1994) Stimulatory effects of immune reactions upon growths of untransplanted tumors. Cancer Res 54:908–914

    CAS  PubMed  Google Scholar 

  18. Daniel D, Meyer-Morse N, Bergsland EK, Dehne K, Coussens LM, Hanahan D (2003) Immune enhancement of skin carcinogenesis by CD4+ T cells. J Exp Med 197:1017–1028

    Article  CAS  PubMed  Google Scholar 

  19. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  Google Scholar 

  20. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839

    Article  CAS  PubMed  Google Scholar 

  21. Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5:141–149

    Article  CAS  PubMed  Google Scholar 

  22. Spiotto MT, Rowley DA, Schreiber H (2004) Bystander elimination of antigen loss variants in established tumors. Nat Med 10:294–298

    CAS  PubMed  Google Scholar 

  23. Calogero RA, Musiani P, Forni G, Cavallo F (2004) Towards a long-lasting immune prevention of HER2 mammary carcinomas: directions from transgenic mice. Cell Cycle 3:1–4

    Google Scholar 

  24. Quaglino E, Rolla S, Iezzi M, Spadaro M, Musiani P, De Giovanni C, Lollini PL, Lanzardo S, Forni G, Sanges R, Crispi S, De Luca P, Calogero R, Cavallo F (2004) Concordant morphologic and gene expression data show that a vaccine halts HER-2/neu preneoplastic lesions. J Clin Invest 113:709–717

    Article  CAS  PubMed  Google Scholar 

  25. Quaglino E, Iezzi M, Mastini C, Amici A, Pericle F, Di Carlo E, Pupa SM, De Giovanni C, Spadaro M, Curcio C, Lollini PL, Musiani P, Forni G, Cavallo F (2004) Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res 64:2858–2864

    CAS  PubMed  Google Scholar 

  26. Spadaro M, Lanzardo S, Curcio C, Forni G, Cavallo F (2004) Immunological inhibition of carcinogenesis. Cancer Immunol Immunother 53:204–216

    Article  CAS  PubMed  Google Scholar 

  27. Boggio K, Nicoletti G, Di Carlo E, Cavallo F, Landuzzi L, Melani C, Giovarelli M, Rossi I, Nanni P, De Giovanni C, Bouchard P, Wolf S, Modesti A, Musiani P, Lollini PL, Colombo MP, Forni G (1998) Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J Exp Med 188:589–596

    Article  CAS  PubMed  Google Scholar 

  28. Soares MM, Mehta V, Finn OJ (2001) Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. J Immunol 166:6555–6563

    CAS  PubMed  Google Scholar 

  29. Iinuma T, Homma S, Noda T, Kufe D, Ohno T, Toda G (2004) Prevention of gastrointestinal tumors based on adenomatous polyposis coli gene mutation by dendritic cell vaccine. J Clin Invest 113:1307–1317

    Article  CAS  PubMed  Google Scholar 

  30. Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108:135–144

    Article  PubMed  Google Scholar 

  31. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  CAS  PubMed  Google Scholar 

  32. Rangarajan A, Weinberg RA (2003) Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 3:952–959

    Article  CAS  PubMed  Google Scholar 

  33. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    CAS  PubMed  Google Scholar 

  34. Gilboa E (1999) How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 48:382–385

    Article  CAS  PubMed  Google Scholar 

  35. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    CAS  PubMed  Google Scholar 

  36. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166

    CAS  PubMed  Google Scholar 

  37. Steinman RM, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K, Iyoda T, Ravetch J, Dhodapkar M, Inaba K, Nussenzweig M (2003) Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann N Y Acad Sci 987:15–25

    CAS  PubMed  Google Scholar 

  38. Delon J, Stoll S, Germain RN (2002) Imaging of T-cell interactions with antigen presenting cells in culture and in intact lymphoid tissue. Immunol Rev 189:51–63

    Article  CAS  PubMed  Google Scholar 

  39. O’Shaughnessy JA, Kelloff GJ, Gordon GB, Dannenberg AJ, Hong WK, Fabian CJ, Sigman CC, Bertagnolli MM, Stratton SP, Lam S, Nelson WG, Meyskens FL, Alberts DS, Follen M, Rustgi AK, Papadimitrakopoulou V, Scardino PT, Gazdar AF, Wattenberg LW, Sporn MB, Sakr WA, Lippman SM, Von Hoff DD (2002) Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res 8:314–346

    PubMed  Google Scholar 

  40. Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305:200–205

    Google Scholar 

  41. Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, Lee JC, Dubinett SM (2000) Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 164:361–370

    CAS  PubMed  Google Scholar 

  42. Radisky D, Hagios C, Bissell MJ (2001) Tumors are unique organs defined by abnormal signaling and context. Semin Cancer Biol 11:87–95

    Google Scholar 

  43. Steinman RM, Dhodapkar M (2001) Active immunization against cancer with dendritic cells: the near future. Int J Cancer 94:459–473

    Article  CAS  PubMed  Google Scholar 

  44. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458

    CAS  PubMed  Google Scholar 

  45. Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64

    Article  CAS  PubMed  Google Scholar 

  46. Ferlazzo G, Munz C (2004) NK cell compartments and their activation by dendritic cells. J Immunol 172:1333–1339

    CAS  PubMed  Google Scholar 

  47. Fujii SI, Shimuzu K, Kronenberg M, Steinman RM (2002) Prolonged interferon-g producing NKT responses induced with a-galactosyl ceramide loaded dendritic cells. Nat Immunol 3:867–874

    Article  CAS  PubMed  Google Scholar 

  48. Simon RM, Steinberg SM, Hamilton M, Hildesheim A, Khleif S, Kwak LW, Mackall CL, Schlom J, Topalian SL, Berzofsky JA (2001) Clinical trial designs for the early clinical development of therapeutic cancer vaccines. J Clin Oncol 19:1848–1854

    CAS  PubMed  Google Scholar 

  49. Gjertsen BT, Bruserud O (2004) How should clinical data be included in experimental studies of cancer immunology? Cancer Immunol Immunother 53:677–680

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr Ralph M. Steinman for critical reading of the manuscript and many helpful suggestions. This paper was supported in part by funds from the National Institutes of Health, Dana Foundation, Irma T. Hirschl Foundation, Irene Diamond Foundation, Fund to Cure Myeloma, and Damon Runyon Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhav V. Dhodapkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhodapkar, M.V. Harnessing host immune responses to preneoplasia: promise and challenges. Cancer Immunol Immunother 54, 409–413 (2005). https://doi.org/10.1007/s00262-004-0607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0607-8

Keywords

Navigation