Skip to main content

Mechanism of Radiation Carcinogenesis: Role of the TGFBI Gene and the Inflammatory Signaling Cascade

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 720))

Abstract

Using an immortalized human bronchial epithelial cell line, we showed previously that the transforming growth factor beta-induced (TGFBI) gene was consistently downregulated by six- to sevenfold among radiation-induced tumorigenic human cells when compared with controls. Trans-fection of TGFBI gene into tumor cells resulted in a significant reduction in tumor growth as well as in vitro anchorage independent growth. The observations that TGFBI knock-out animals showed increased spontaneous tumor incidence and chemically induced tumors highlight the suppressive nature of the gene. There is evidence that extranuclear/extracellular targets are important in low-dose radiation response and that the cyclo-oxygenase-2 signaling pathway mediates the process. The involvement of NFκB-dependent cytokines and the resultant inflammatory response works in concert with in modulating radiation-induced bronchial carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hei TK, Piao CQ, Sutter T, Willey JC, Suzuki K (1996) Cellular and molecular alterations in human epithelial cells transformed by high LET radiation. Adv Space Res 18:137–143

    Article  PubMed  CAS  Google Scholar 

  2. Willey JC, Broussoud A, Sleemi A, Bennett WP, Cerutti P, Curtis CC (1991) Immortalization of human bronchial epithelial cells by papillomaviruses 16 or 18. Cancer Res 51:5370–5376

    PubMed  CAS  Google Scholar 

  3. Piao CQ, Liu L, Zhao YL, Balajee AS, Suzuki M, Hei TK (2005) Immortalization of human small airway epithelial cells by ectopic expression of telomerase. Carcinogenesis 26:725–731

    Article  PubMed  CAS  Google Scholar 

  4. Hei TK, Piao CQ, Willey JC, Sutters T, Hall EJ (1994) Malignant transformation of human bronchial epithelial cells by radon-simulated alpha particles. Carcinogenesis 15:431–437

    Article  PubMed  CAS  Google Scholar 

  5. Zhao YL, Shao G, Piao CQ, Berenguer J, Hei TK (2004) Down regulation of BigH3 gene is involved in tumorigenesis in human bronchial epithelial cells induced by heavy ion radiation. Rad Res 162:655–659

    Article  CAS  Google Scholar 

  6. Skonier J, Bennett K, Rothwell V, Kosowski S, Plowman G, Wallace P, Edelhoff S, Disteche C, Neubauer M, Purchio AF (1994) Betaig-h3: a transforming growth factor-beta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol 13(6):571–584

    Article  PubMed  CAS  Google Scholar 

  7. Kim JE, Jeong HW, Nam JO, Lee BH, Choi JY, Park RW, Park JY, Kim IS (2002) Identification of motifs in the fasciclin domains of the transforming growth factor-beta-induced matrix protein betaig-h3 that interact with the alphaVbeta5 integrin. J Biol Chem 277:46159–46165

    Article  PubMed  CAS  Google Scholar 

  8. Calaf GM, Echiburu-Chau C, Zhao YL, Hei TK (2008) Betaig-h3 protein expression as a marker for breast cancer. Int J Mol Med 21(5):561–568

    PubMed  Google Scholar 

  9. Yamanaka M, Kimura F, Kagata Y, Kondoh N, Asano T, Yamamoto M, Hayakawa M (2008) BigH3 is overexpressed in clear cell renal cell carcinoma. Oncol Report 19:865–874

    CAS  Google Scholar 

  10. Ma, C., Rong, Y., Radiloff, D.R., Datto, M.B., Centeno, B., Bao, S. Cheng, A.W., Ln F., Jiang, S. Yeatman, T.J., Wang, X.F., Extracellular matrix protein TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Develop. 22: 308–321, 2008.

    Google Scholar 

  11. Shao G, Berenguer J, Borczuk AC, Powell CA, Hei TK, Zhao Y (2006) Epigenetic inactivation of Betaig-h3 gene in human cancer cells. Cancer Res 66:4566–4573

    Article  PubMed  CAS  Google Scholar 

  12. Zhao YL, Piao CQ, Hei TK (2002) Overexpression of BigH3 gene downregulates integrin α5β1 and suppresses tumorigenicity in radiation induced tumorigenic human bronchial epithelial cells. Brit J Cancer 86:1923–1928

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, Wen GY, Shao G, Wang CD, Lin CS, Bhagat G, Balajee A, Hei TK, Zhao YL (2009) BigH3 deficiency induces genomic instability and predisposes mice to spontaneous tumor development. Cancer Res 69:37–44

    Article  PubMed  CAS  Google Scholar 

  14. Morgan WF (2003) Non-target and delayed effects of exposure to ionizing radiation: I Radiation induced genomic instability and bystander effects in vitro. Radiat Res 159:567–580

    Article  PubMed  CAS  Google Scholar 

  15. Hei TK, Zhou H, Ivanov VN, Mei H, Lieberman HB, Brenner DJ, Amundson SA, Geard CR (2008) Mechanism of radiation induced bystander effects: a unifying model. J Pharm Pharmacol 60:943–950

    Article  PubMed  CAS  Google Scholar 

  16. Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK (2000) Induction of a bystander mutagenic effect of α particles in mammalian cells. Proc Natl Acad Sci USA 97:2099–2104

    Article  PubMed  CAS  Google Scholar 

  17. Shao C, Stewart V, Folkard M, Michael BD, Prise KM (2003) Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res 63:8437–8442

    PubMed  CAS  Google Scholar 

  18. Cucinotta FA, Chappell LJ (2010) Non-targeted effects and the dose response for heavy ion tumor induction. Mutat Res 687:49–53

    Article  PubMed  CAS  Google Scholar 

  19. Zhou HN, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, Yu ZL, Lieberman HB, Hei TK (2005) Mechanism of radiation-induced bystander effects: role of cyclooxygenase 2 signa-ling pathway. Proc Natl Acad Sci USA 102:14641–146465

    Article  PubMed  CAS  Google Scholar 

  20. Lee JH, Paull TT (2007) Activation and regulation of ATM kinase activity in response to DNA doble-strand breaks. Oncogene 26:7741–7748

    Article  PubMed  CAS  Google Scholar 

  21. Burdak-Rothkamm S, Rothkamm K, Prise KM (2008) ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Cancer Res 68:7059–7065

    Article  PubMed  CAS  Google Scholar 

  22. Ivanov VN, Zhou H, Ghandhi SA, Karasic TB, Yaghoubian B, Amundson SA, Hei TK (2010) Radiation-induced bystander signaling pathways in human fibroblasts: a role for interleukin-33 in the ­signal transmission. Cell Signal 22:1076–1087

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y, Zhou J, Held KD, Redmond RW, Prise KM, Liber HL (2008) Deficiencies of double-strand break repair factors and effects on mutagenesis in directly gamma-irradiated and medium-mediated bystander human lymphoblastoid cells. Radiat Res 169:197–206

    Article  PubMed  CAS  Google Scholar 

  24. Zhou H, Ivanov VN, Lien YC, Davidson M, Hei TK (2008) Mitochondrial function and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects. Cancer Res 68:2233–2240

    Article  PubMed  CAS  Google Scholar 

  25. Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V, Pazzaglia S, Toni MP, Pimpinella M, Covelli V, Saran A (2008) Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci USA 105:12445–12450

    Article  PubMed  CAS  Google Scholar 

  26. Emerit I, Levy A, Cernjavski L, Arutyunyan R, Oganesyan N, Pogosian A, Mejlumian J, Sarkisian T, Gulkandanian M, Quastel M, Goldsmith J, Riklis E, Kordysh E, Poliak S, Merklin L (1994) Transferable clastogenic activities in plasma from person exposed as salvage personnel of the Chernobyl reactor. J Cancer Res Clin Oncol 120:558–561

    Article  PubMed  CAS  Google Scholar 

  27. Diallo I, Haddy N, Adjadj E, Samand A, Quiniou E, Chavaudra J, Alziar I, Perret N, Guerin S, Lefkopoulos D, de Vathaire F (2009) Frequency distribution of second solid cancer locations in relation to the irradiated volume among 115 patients treated for childhood ­cancer. Int J Radiat Oncol Biol Phys 74:876–883

    Article  PubMed  Google Scholar 

  28. Hei TK, Ballas LK, Brenner DJ, Geard CR (2009) Advances in radiobiological studies using a microbeam. J Radiation Res 50:A7–A12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by funding from the National Institutes of Health grants CA 49062, ES 11804, NIH Resource Center Grant RR 11623 and Environmental Center grant ES 09089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom K. Hei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hei, T.K., Zhao, Y., Zhou, H., Ivanov, V. (2011). Mechanism of Radiation Carcinogenesis: Role of the TGFBI Gene and the Inflammatory Signaling Cascade. In: Rhim, J., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 720. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0254-1_13

Download citation

Publish with us

Policies and ethics