Skip to main content

Tumorigenesis by Adenovirus Type 12 E1A

  • Chapter
  • First Online:
Cancer Associated Viruses

Part of the book series: Current Cancer Research ((CUCR))

  • 1255 Accesses

Abstract

All human adenovirus serotypes are capable of transforming mammalian cells in vitro. Transformation requires only two viral oncogenes, E1A and E1B, which cause unconstrained cell proliferation by deregulating the cell cycle and blocking apoptosis, respectively. In contrast to the transformation omnipotence inherent in all 51 serotypes, only a few serotypes including adenovirus type 12 (Ad12) have the additional capability of generating tumors in immunocompetent rodents. The Ad12 E1A protein (E1A-12) is the key determinant of viral tumorigenesis. Specifically, E1A-12 downregulates Major Histocompatibility Complex (MHC) class I antigens on the cell surface by shutting off the class I gene transcription. This enables Ad12-transformed cells to evade lysis by cytotoxic T lymphocytes (CTLs). E1A-12 mediates MHC class I shutoff via regulating DNA binding and transcriptional activities of both activator NF-κB (p50/p65) and repressor COUP-TFII. On the one hand, E1A-12 prevents DNA binding of NF-κB to the class I enhancer R1 site to disable this Master Regulator of immune genes from stimulating transcription. By physically binding NF-κB, E1A-12 blocks protein kinase A from phosphorylating the critical residues on p50 and p65 that are required for NF-κB DNA binding and transactivation, respectively. On the other hand, E1A-12 induces binding of COUP-TFII repression complex to the class I enhancer R2 site. E1A-12 not only upregulates COUP-TFII expression, but also acts as a physical component of the repression complex to recruit or stabilize the histone deacetylases HDAC1 and HDAC8. Histone deacetylation by HDAC in the class I enhancer region causes chromatin condensation and transcription repression of MHC class I. These two E1A-12-mediated complementary mechanisms that involve DNA binding regulation of both NF-κB and COUP-TFII/HDAC, provide a “FAIL-SAFE” strategy to ensure persistent diminution of surface MHC class I antigens under variable physiological conditions. In addition, E1A-12 mediates another compelling mechanism that involves evasion of natural killer (NK) cells, which normally lyse cells upon loss of surface MHC class I antigens. Importantly, E1A-12 downregulates surface expression of all NKG2D activating ligands including RAE1-α, -β, -γ, -ε, MULT1, and H60. Notably, the mRNA levels of these NKG2D ligands are also downregulated, perhaps through a mechanism similar to MHC class I shutoff, since promoters of these ligands also contain binding sites for NF-κB and COUP-TFII. Finally, E1A-12-mediated tumorigenesis requires the function encoded by the unique 20-amino acid “Spacer” between the conserved regions CR2 and CR3. This Spacer plays an important role in inducing neuronal and tumor-related genes. Significantly, neuronal gene induction by E1A-12 requires not only the relief of transcription repression by the neuron-restrictive silencer factor (NRSF), but also the stimulation of neuronal promoters by certain transactivators. The loss of NRSF repression is mediated by E1A-12 via proteasomal degradation of the repressor in the nucleus. The E1A-12 mediated induction of neuronal and tumor-related genes may be essential for cell outgrowth and invasion in Ad12 tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackrill AM, Blair GE (1988) Regulation of major histocompatibility class I gene expression at the level of transcription in highly oncogenic adenovirus transformed rat cells. Oncogene 3:483–487

    PubMed  CAS  Google Scholar 

  • Albert ML, Darnell RB (2004) Paraneoplastic neurological degenerations: keys to tumour immunity. Nat Rev Cancer 4:36–44

    Article  PubMed  CAS  Google Scholar 

  • Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683, Review

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, Houweling A, Schrier PI, Bos JL, van der Eb AJ (1982) Characterization of cells transformed by Ad5/Ad12 hybrid early region I plasmids. Virology 120:422–432

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, Schrier PI, Houweling A, Bos JL, van der Eb AJ, Zylstra M, Melief CJM (1983) Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature 350:776–779

    Article  Google Scholar 

  • Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Böcker W, Brosius J, Tiedge H (1997) Expression of neural BC200 RNA in human tumours. J Pathol 183:345–351

    Article  PubMed  CAS  Google Scholar 

  • Chinnadurai G (2004) Modulation of oncogenic transformation by the human adenovirus E1A C-terminal region. Curr Top Microbiol Immunol 273:139–161, Review

    PubMed  CAS  Google Scholar 

  • Cook JL, Krantz CK, Routes BA (1996) Role of p300-family proteins in E1A oncogene ­induction of cytolytic susceptibility and tumor cell rejection. Proc Natl Acad Sci USA 93:13985–13990

    Article  PubMed  CAS  Google Scholar 

  • Coulson JM (2005) Transcriptional regulation: cancer, neurons and the REST. Curr Biol 15:665–668, Review

    Article  Google Scholar 

  • Eager KB, Williams J, Breiding D, Pan S, Knowles B, Appela E, Ricciardi RP (1985) Expression of histocompatibility antigens H-2K, D, and L is reduced in adenovirus-12-transformed mouse cells and is restored by interferon γ. Proc Natl Acad Sci USA 82:5525–5529

    Article  PubMed  CAS  Google Scholar 

  • Endter C, Dobner T (2004) Cell transformation by human adenoviruses. Curr Top Microbiol Immunol 273:163–214, Review

    PubMed  CAS  Google Scholar 

  • Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Shenk T (1997) Viral transactivating proteins. Annu Rev Genet 31:177–212, Review

    Article  PubMed  CAS  Google Scholar 

  • Friedman DJ, Ricciardi RP (1988) Adenovirus type 12 E1A gene represses accumulation of MHC class I mRNA at the level of transcription. Virology 165:303–305

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH (1972) Tumor production in immunosuppressed rats with cells transformed in vitro by adenovirus type 2. J Gen Virol 16:99–102

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH, Turnell AS (2001) Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 20:7824–7835, Review

    Article  PubMed  CAS  Google Scholar 

  • Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen G, Perou C, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98:13784–13789

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance and tumor immune escape. J Cell Physiol 195:346–355, Review

    Article  PubMed  CAS  Google Scholar 

  • Ge R, Kralli A, Weinmann R, Ricciardi RP (1992) Down-regulation of the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells is accompanied by an increase in factor binding. J Virol 66:6969–6978

    PubMed  CAS  Google Scholar 

  • Ge R, Liu X, Ricciardi RP (1994) E1A oncogene of adenovirus-12 mediates trans-repression of MHC class I transcription in Ad5/Ad12 somatic hybrid transformed cells. Virology 203:389–392

    Article  PubMed  CAS  Google Scholar 

  • Grone J, Doebler O, Loddenkemper C, Hotz B, Buhr HJ, Bhargava S (2006) Robo1/Robo4: differential expression of angiogenic markers in colorectal cancer. Oncol Rep 15:1437–1443

    PubMed  Google Scholar 

  • Gu H, Roizman B (2007) Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci USA 104:17134–17139

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Liang Y, Mandel G, Roizman B (2005) Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci USA 102:7571–7576

    Article  PubMed  CAS  Google Scholar 

  • Guan H, Smirnov DA, Ricciardi RP (2003) Identification of genes associated with adenovirus 12 tumorigenesis by microarray. Virology 309:114–124

    Article  PubMed  CAS  Google Scholar 

  • Guan H, Hou S, Ricciardi RP (2005) DNA binding of repressor nuclear factor-kappaB p50/p50 depends on phosphorylation of Ser337 by the protein kinase A catalytic subunit. J Biol Chem 280:9957–9962

    Article  PubMed  CAS  Google Scholar 

  • Guan H, Jiao J, Ricciardi RP (2008) Tumorigenic adenovirus type 12 E1A inhibits phosphorylation of NF-kappaB by PKAc, causing loss of DNA binding and transactivation. J Virol 82:40–48

    Article  PubMed  CAS  Google Scholar 

  • Guan H, Williams JF, Ricciardi RP (2009) Induction of neuronal and tumor-related genes by adenovirus type 12 E1A. J Virol 83:651–661

    Article  PubMed  CAS  Google Scholar 

  • Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T, Lasorella A, Iavarone A, Chang S, Hernando E, Pagano M (2008) Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature 452:365–369

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Tanaka K, Jay F, Khoury G, Jay G (1985) Modulation of the tumorigenicity of human adenovirus-12-transformed cells by interferon. Cell 43:263–267

    Article  PubMed  CAS  Google Scholar 

  • Hohlweg U, Dorn A, Hosel M, Webb D, Buettner R, Doerfler W (2004) Tumorigenesis by adenovirus type 12 in newborn Syrian hamsters. Curr Top Microbiol Immunol 273:215–244, Review

    PubMed  CAS  Google Scholar 

  • Hou S, Guan H, Ricciardi RP (2002) In adenovirus type 12 tumorigenic cells, major histocompatibility complex class I transcription shutoff is overcome by induction of NF-kappaB and relief of COUP-TFII repression. J Virol 76:3212–3220

    Article  PubMed  CAS  Google Scholar 

  • Hou S, Guan H, Ricciardi RP (2003) Phosphorylation of serine 337 of NF-kappaB p50 is critical for DNA binding. J Biol Chem 278:45994–45998

    Article  PubMed  CAS  Google Scholar 

  • Huebner RJ, Rowe WP, Lane WT (1962) Oncogenic effects in hamsters of human adenovirus types 12 and 18. Proc Natl Acad Sci USA 48:2051–2058

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson S (1990) The myc gene family proteins and their role in transformation and differentiation. Semin Cancer Biol 1:359–369

    PubMed  CAS  Google Scholar 

  • Ito H, Funahashi S, Yamauchi N, Shibahara J, Midorikawa Y, Kawai S, Kinoshita Y, Watanabe A, Hippo Y, Ohtomo T, Iwanari H, Nakajima A, Makuuchi M, Fukayama M, Hirata Y, Hamakubo T, Kodama T, Tsuchiya M, Aburatani H (2006) Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin Cancer Res 12:3257–3264

    Article  PubMed  CAS  Google Scholar 

  • Jiao J, Guan H, Lippa AM, Ricciardi RP (2010) The N terminus of adenovirus 12 E1A inhibits major histocompatibility complex class I expression by preventing phosphorylation of NF-κB p65 Ser276 through direct binding. J Virol 84:7668–7674

    Article  PubMed  CAS  Google Scholar 

  • Kawagoe H, Kandilci A, Kranenburg TA, Grosveld GC (2007) Overexpression of N-Myc rapidly causes acute myeloid leukemia in mice. Cancer Res 67:10677–10685

    Article  PubMed  CAS  Google Scholar 

  • Kenyon DJ, Raska K Jr (1986) Region E1a of highly oncogenic adenovirus 12 in transformed cells protects against NK but not LAK cytolysis. Virology 155:644–654

    Article  PubMed  CAS  Google Scholar 

  • Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998) Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92:205–215

    Article  PubMed  CAS  Google Scholar 

  • Kimura A, Israel A, Le Bail O, Kourilsky P (1986) Detailed analysis of the mouse H-2Kb promoter: enhancer-like sequences and their role in the regulation of class I gene expression. Cell 44:261–272

    Article  PubMed  CAS  Google Scholar 

  • Kralli A, Ge R, Graeven U, Ricciardi RP, Weinmann R (1992) Negative regulation of the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells via a retinoic acid response element. J Virol 66:6979–6988

    PubMed  CAS  Google Scholar 

  • Kushner DB, Ricciardi RP (1999) Reduced phosphorylation of p50 is responsible for diminished NF-κB binding to the major histocompatibility complex class I enhancer in adenovirus 12 transformed cells. Mol Cell Biol 99:2169–2179

    Google Scholar 

  • Kushner DB, Pereira DS, Liu X, Graham FL, Ricciardi RP (1996) The first exon of Ad12 E1A excluding the transactivation domain mediates differential binding of COUP-TF and NF-κB to the MHC class I enhancer in transformed cells. Oncogene 12:143–151

    PubMed  CAS  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274, Review

    Article  PubMed  CAS  Google Scholar 

  • Li CC, Dai RM, Chen E, Longo DL (1994) Phosphorylation of NF-KB1-p50 is involved in NF-kappa B activation and stable DNA binding. J Biol Chem 269:30089–30092

    PubMed  CAS  Google Scholar 

  • Liu X, Ge R, Westmoreland S, Cooney AJ, Tsai SY, Tsai MJ, Ricciardi RP (1994) Negative regulation by the R2 site of the MHC class I enhancer in adenovirus-12 transformed cells correlates with high levels of COUP-TF binding. Oncogene 9:2183–2190

    PubMed  CAS  Google Scholar 

  • Liu X, Ge R, Ricciardi RP (1996) Evidence for the involvement of a nuclear NF-κB inhibitor in global down-regulation of the major histocompatibility complex class I enhancer in adenovirus type12-transformed cells. Mol Cell Biol 16:398–404

    PubMed  CAS  Google Scholar 

  • Lodoen MB, Lanier LL (2005) Viral modulation of NK cell immunity. Nat Rev Microbiol 3:59–69, Review

    Article  PubMed  CAS  Google Scholar 

  • Majumder S (2006) REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle 5:1929–1935, Review

    Article  PubMed  CAS  Google Scholar 

  • Makrigiannis AP, Anderson SK (2003) Regulation of natural killer cell function. Cancer Biol Ther 2:610–616, Review

    PubMed  CAS  Google Scholar 

  • Mertsch S, Schmitz N, Jeibmann A, Geng JG, Paulus W, Senner V (2008) Slit2 involvement in glioma cell migration is mediated by Robo1 receptor. J Neurooncol 87:1–7

    Article  PubMed  Google Scholar 

  • Nausch N, Florin L, Hartenstein B, Angel P, Schorpp-Kistner M, Cerwenka A (2006) Cutting edge: the AP-1 subunit JunB determines NK cell-mediated target cell killing by regulation of the NKG2D-ligand RAE-1epsilon. J Immunol 176:7–11

    PubMed  CAS  Google Scholar 

  • Nomura M, Zou Z, Joh T, Takihara Y, Matsuda Y, Shimada K (1996) Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J Biochem 120:987–995

    PubMed  CAS  Google Scholar 

  • Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866, Review

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Cooney AJ, Kuratani S, DeMayo FJ, Tsai SY, Tsai MJ (1994) Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. Proc Natl Acad Sci USA 91:4451–4455

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi RP (1999) Adenovirus transformation and tumorigenicity. In: Seth P (ed) Adenoviruses: basic biology to gene therapy. RG Landes Co., Austin, TX, pp 217–227

    Google Scholar 

  • Ricciardi RP, Zhao B, Guan H (2006) Mechanism of tumorigenesis mediated by adenovirus-12 E1A. In: Tognon M (ed) Viral oncogenesis. Research Signpost, Kerala, India, pp 107–124

    Google Scholar 

  • Routes JM, Ryan S, Morris K, Takaki R, Cerwenka A, Lanier LL (2005) Adenovirus serotype 5 E1A sensitizes tumor cells to NKG2D-dependent NK cell lysis and tumor rejection. J Exp Med 202:1477–1482

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Föhring B, Shenk T, Raska K Jr (1985) Tumorigenicity of adenovirus transformed cells: region E1A of adenovirus 12 confers resistance to natural killer cells. Virology 147:413–421

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Raska K Jr, Shenk T (1988) Adenovirus type 5 and type 12 recombinant viruses containing heterologous E1 genes are viable, transform rat cells, but are not tumorigenic in rats. Virology 166:281–284

    Article  PubMed  CAS  Google Scholar 

  • Scheidereit C (2006) IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25:6685–6705, Review

    Article  PubMed  CAS  Google Scholar 

  • Schrader EK, Harstad KG, Matouschek A (2009) Targeting proteins for degradation. Nat Chem Biol 5:815–822

    Article  PubMed  CAS  Google Scholar 

  • Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, van der Eb AJ (1983) Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305:771–775

    Article  PubMed  CAS  Google Scholar 

  • Smirnov DA, Hou S, Ricciardi RP (2000) Association of histone deacetylase with COUP-TF in tumorigenic Ad12 transformed cells and its potential role in shut-off of MHC class I transcription. Virology 268:319–328

    Article  PubMed  CAS  Google Scholar 

  • Smirnov DA, Hou S, Liu X, Claudio E, Siebenlist UK, Ricciardi RP (2001) COUP-TFII is up-regulated in adenovirus type 12 tumorigenic cells and is a repressor of MHC class I transcription. Virology 284:13–19

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Isselbacher KJ, Khoury G, Jay G (1985) Reversal of oncogenesis by the expression of a histocompatibility complex class I gene. Science 228:26–30

    Article  PubMed  CAS  Google Scholar 

  • Trentin JJ, Yabe Y, Taylor G (1962) The quest for human cancer viruses. Science 137:835–841

    Article  PubMed  CAS  Google Scholar 

  • Vasavada R, Eager KB, Barbanti-Brodano G, Caputo A, Ricciardi RP (1986) Adenovirus type 12 early region 1A proteins repress class I HLA expression in transformed human cells. Proc Natl Acad Sci USA 83:5257–5261

    Article  PubMed  CAS  Google Scholar 

  • Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, Zhao JJ, Roberts TM, Mandel G, Hannon GJ, Depinho RA, Chin L, Elledge SJ (2005) A genetic screen for candidate tumor suppressors identifies REST. Cell 121:837–848

    Article  PubMed  CAS  Google Scholar 

  • Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang AC, Leng Y, Maehr R, Shi Y, Harper JW, Elledge SJ (2008) SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452:370–374

    Article  PubMed  CAS  Google Scholar 

  • Williams JF, Zhang Y, Williams MA, Hou S, Kushner D, Ricciardi RP (2004) E1A-based determinants of oncogenicity in human adenovirus groups A and C. Curr Top Microbiol Immunol 273:245–288, Review

    PubMed  CAS  Google Scholar 

  • Xiao C, Ghosh S (2005) NF-kappaB, an evolutionarily conserved mediator of immune and inflammatory responses. Adv Exp Med Biol 560:41–45, Review

    Article  PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR, Eager KB, Ricciardi RP (1988) CTL recognition of adenovirus-transformed cells infected with influenza virus: lysis by anti-influenza CTL parallels adenovirus-12-induced suppression of class I MHC molecules. Virology 162:236–238

    Article  PubMed  CAS  Google Scholar 

  • Zallen JA, Yi BA, Bargmann CI (1998) The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 92:217–227

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Dang C, Ma Q, Shimahara Y (2005) Expression of nerve growth factor receptors and their prognostic value in human pancreatic cancer. Oncol Rep 14:161–171

    PubMed  CAS  Google Scholar 

  • Zhao B, Riciardi RP (2006) E1A is the component of the MHC class I enhancer complex that ­mediates HDAC1, 8 chromatin repression in adenovirus-12 tumorigenic cells. Virology 352:338–344

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Hou S, Ricciardi RP (2003) Chromatin repression by COUP-TFII and HDAC dominates activation by NF-kappaB in regulating major histocompatibility complex class I transcription in adenovirus tumorigenic cells. Virology 306:68–76

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S (1997) The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89:413–424

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1:661–671

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, May MJ, Jimi E, Ghosh S (2002) The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9:625–636

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Tsai SY, Tsai M (2000) From apoptosis to angiogenesis: new insights into the roles of nuclear orphan receptors, chicken ovalbumin upstreampromoter-transcription factors, during development. Biochim Biophys Acta 1470:M63–M68, Review

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Doherty PC (1979) MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function and responsiveness. Adv Immunol 27:51–177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We wish to acknowledge Grant CA29797 from the National Institutes of Health (to R. P. R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Ricciardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guan, H., Ricciardi, R.P. (2012). Tumorigenesis by Adenovirus Type 12 E1A. In: Robertson, E. (eds) Cancer Associated Viruses. Current Cancer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0016-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0016-5_20

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9999-3

  • Online ISBN: 978-1-4614-0016-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics