Skip to main content

NF-κB, an Evolutionarily Conserved Mediator of Immune and Inflammatory Responses

  • Conference paper
Mechanisms of Lymphocyte Activation and Immune Regulation X

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 560))

Abstract

NF-κB is a family of structurally related and evolutionarily conserved transcription factors. There are five NF-κB proteins in mammals: RelAIp65, RelB, c-Rel, NF-κB1 (p50 and its precursor p105), and NF-κB2 (p52 and its precursor p100); and three in flies: Dorsal, Dif, and Relish. All NFκB proteins contain a N-terminal 300 amino acid re1 homology domain, which is responsible for DNA binding, dimerization, and interaction with the inhibitors of NF-κB, the IκB family proteins. RelA, RelB, c-Rel, Dorsal, and Dif have a transcription activation domain at their C-termini, where p100, p105, and Relish contain ankyrin repeats, signature structures of IκB proteins. NF-κB proteins form hetero- or homodimers and are retained in the cytoplasm by IκBs. There are five IκB proteins in mammals: IκBα, IκBβ, IκBγ, IκBε, and Bcl-3; and one IκB protein in fly: Cactus. 1κBα and IκBβ share a tripartite organization: an N-terminal domain that is phosphorylated in response to signals, a central ankyrin repeat domain, and a C-terminal PEST domain that is involved in the basal turnover of the protein. All other IκB proteins have central ankyrin repeat domain, but differ from IκBα and IκBβ at their N- and C- terminal domains. IκB proteins form complexes with NF-κB dimers, with ankyrin repeats in direct contact with re1 homology domains. This interaction is essential to keep NF-κB dimers in the cytoplasm, thus physically sequestrating them from their transcriptional target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ghosh, S., May, M. J., & Kopp, E. B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16, 225–60 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. Ghosh, S. & Karin, M. Missing pieccs in the NFkB puzzle. Cell 109, S81–S96 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–7. (2000).

    Article  PubMed  CAS  Google Scholar 

  4. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3, 121–6. (2002).

    Article  PubMed  CAS  Google Scholar 

  5. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2, 675–80. (2001).

    Article  PubMed  CAS  Google Scholar 

  6. Kopp, E. et al. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev 13, 2059–71. (1999).

    PubMed  CAS  Google Scholar 

  7. Deng, L. et al. Activation of the Ikappaß kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex und a unique polyubiquitin chain (2000).

    Google Scholar 

  8. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–51. (2001).

    Article  PubMed  CAS  Google Scholar 

  9. Sanjo, H. et al. TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol Cell Biol 23, 1231–8. (2003).

    Article  PubMed  CAS  Google Scholar 

  10. Komatsu, Y. et al. Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech Dev 119, 239–249 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. Mishina, Y., Suzuki, A., Ueno, N. & Behringer, R. R. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9, 3027–37. (1995).

    PubMed  CAS  Google Scholar 

  12. Shi, Y. & Massague, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700. (2003).

    Article  PubMed  CAS  Google Scholar 

  13. Huang, J. D., Schwyter, D. H., Shirokawa, J. M. & Courey, A. J. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev 7, 694–704. (1993).

    PubMed  CAS  Google Scholar 

  14. Wharton, K. A., Ray, R. P. & Gelbart, W. M. An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117, 807–22. (1993).

    PubMed  CAS  Google Scholar 

  15. Letterio, J. J. & Roberts, A. B. TGF-beta: a critical modulator of immune cell function. Clin Immunol Immunopathol 84, 244–50. (1997).

    Article  PubMed  CAS  Google Scholar 

  16. Geiser, A. G. et al. Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc Natl Acad Sci U S A 90, 9944–8. (1993).

    Article  PubMed  CAS  Google Scholar 

  17. Vodovotz, Y. et al. Spontaneously increased production of nitric oxide and aberrant expression of the inducible nitric oxide synthase in vivo in the transforming growth factor beta 1 null mouse. J Exp Med 183, 2337–42. (1996).

    Article  PubMed  CAS  Google Scholar 

  18. Bitzer, M. et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev 14, 187–97. (2000).

    PubMed  CAS  Google Scholar 

  19. Xiao, C., Shim, J-H., Kluppel, M., Zhang, S-M., Dong, C., Flavell, R. A., Fu, X-Y., Wrana, J. L., Hogan, B. L. M., and Ghosh, S. Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis. Genes Dev 17 2933–2949 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Xiao, C., Ghosh, S. (2005). NF-κB, an Evolutionarily Conserved Mediator of Immune and Inflammatory Responses. In: Gupta, S., Paul, W.E., Steinman, R. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation X. Advances in Experimental Medicine and Biology, vol 560. Springer, Boston, MA. https://doi.org/10.1007/0-387-24180-9_5

Download citation

Publish with us

Policies and ethics