Skip to main content

Chemistry of the Formation of the Terrestrial Planets

  • Conference paper
Chemistry and Physics of Terrestrial Planets

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 6))

Abstract

Many planetary scientists have successfully argued that planets and meteorites are genetically related and have formed, directly or indirectly, from the solar nebula. The physical and chemical evolution of the solar nebula is, therefore, of great importance and many astrophysicists and astrochemists have devoted considerable effort to elucidating the process. A chemical study of the solar nebula requires information on the nebular distribution of pressure and temperature with time. Such information can be deduced partly from present-day astronomical observations, assuming the principle of uniformitarianism, and partly from theoretical models. The uncertainties in these models are large, resulting in a variety of possible physical conditions as is evident in many works of Hoyle (e.g., Hoyle, 1960; Hoyle and Wickramasinghe, 1968) and Cameron (e.g., Cameron, 1971,1978; and Cameron and Pine, 1973). Depending on the physical state of the gas, totally different models of the nebula, such as the band model of the plasmatic nebula (Alfvén, 1978), may result. The flexibility of the physical models results from lack of discriminatory criteria that can finitely rule out some models and permit a preference of one or more over others. In view of the difficulties associated with the construction of a model of a physically evolving solar nebula, can one proceed to understand the chemistry of formation of the meteorites and terrestrial planets in a general way without invoking any one particular physical model? To answer this question, we must briefly look into the various classes of physical models as reviewed by Reeves (1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens, T. V. (1985) Pyrite: Shock compression, isentropic release and composition of the Earth’s care. EOS 66, 371.

    Google Scholar 

  • Alfvén, H. (1978) The band structure of the solar system, in The Origin of the Solar System, edited by S. F. Dermott, pp. 41–48, John Wiley, New York.

    Google Scholar 

  • Alfvén, H., and Arrhenius, G. (1976) Evolution of the Solar System, NASA SP-345, U.S. Govt. Printing Office, Washington, D.C., 600 pp.

    Google Scholar 

  • Anders, E. (1964) Origin, age and composition of meteorites, Space Sci. Rev. 3, 583–714.

    Article  Google Scholar 

  • Anders, E. (1971) Meteorites and the early solar system, Ann. Rev. Astron. Astrophys. 9, 1–34.

    Article  Google Scholar 

  • Anders, E. (1977) Chemical compositions of the Moon, Earth, and eucrite parent body, Phil. Trans. Roy. Soc. London, Ser. A 285, 23–40.

    Article  Google Scholar 

  • Anders, E., and Ebihara, M. (1982) Solar-system abundances of the elements, Geochim. Cosmochim. Acta 46, 2363–2380

    Article  Google Scholar 

  • Arrhenius, G. (1978) Chemical aspects of the formation of the solar system, in The Origin of the Solar System, edited by S. F. Dermott, pp. 521–581, John Wiley, New York.

    Google Scholar 

  • Ash, M. E., Shapiro, I. I., and Smith, W. B. (1971) The system of planetary masses, Science 174, 551–556.

    Article  Google Scholar 

  • BVSP (1981) Basaltic Volcanism Study Project 1976–1979, Pergamon Press, New York, 1286 pp.

    Google Scholar 

  • Barin, I., and Knacke, O. (1973) Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 921 pp.

    Google Scholar 

  • Barin, I., Knacke, O., and Kubaschewski, O. (1977) Thermochemical Properties of Inorganic Substances, Supplement, Springer-Verlag, Berlin, 861 pp.

    Google Scholar 

  • Barshay, S. S., and Lewis, J. S. (1976) Chemistry of primitive solar material, Ann. Rev. Astron. Astrophys. 14, 81–94

    Article  Google Scholar 

  • Black, D. C. (1978) Isotopic anomalies in solar system material—what can they tell us? in The Origin of the Solar System, edited by S. F. Dermott, pp. 583–598, John Wiley, New York.

    Google Scholar 

  • Blander, M. (1971) The constrained equilibrium theory: Sulphide phases in meteorites, Geochim. Cosmochim. Acta 35, 61–76.

    Article  Google Scholar 

  • Blander, M., and Abdel-Gawad, M. (1969) The origin of meteorites and the constrained equilibrium condensation theory, Geochim. Cosmochim. Acta 33, 701–716.

    Article  Google Scholar 

  • Blander, M., and Katz, J. L. (1967) Condensation of primordial dust, Geochim. Cosmochim. Acta 31, 1025–1034.

    Article  Google Scholar 

  • Blencoe, J. G., Merkel, G. A., and Seil, M. K. (1982) Thermodynamics of crystal-fluid equilibria, with applications to the system 3O8-CaA12Si2O8-SiO2-NaC1-CaC12-H2O, Adv. Phys. Geochem. 2, 191–222.

    Google Scholar 

  • Bohlen, S. R., and Boettcher, A. L. (1982) Experimental investigations and geological applications of orthopyroxene geobarometry, Amer. Mineral. 66, 951–964.

    Google Scholar 

  • Boynton, W. V. (1975) Fractionation in the solar nebula: condensation of yttrium and the rare earth elements, Geochim. Cosmochim. Acta 39, 569–584.

    Article  Google Scholar 

  • Braginsky, S. I. (1963) Structure of the F layer and reasons for convection in the Earth’s core, Dokl. Akad. Nauk. SSSR 149, 1311–1314.

    Google Scholar 

  • Brett, R., and Bell, P. M. (1969) Melting relations in the Fe-rich portion of the system Fe-FeS at 30 kb pressure, Earth Planet. Sci. Lett. 6, 479–482.

    Article  Google Scholar 

  • Cameron, A. G. W. (1971) The early evolution of the solar system, in Symposium on the Evolutionary and Physical Properties of Meteoroids, Int. Astron. Union. Colloq., No. 13, Albany, New York.

    Google Scholar 

  • Cameron, A. G. W. (1973) Abundances of the elements in the solar system, Space Sci. Rev. 15, 121–146.

    Article  Google Scholar 

  • Cameron, A. G. W. (1978) The primitive solar accretion disk and the formation of the planets, in The Origin of the Solar System, edited by S. F. Dermott, pp. 49–74, John Wiley, New York.

    Google Scholar 

  • Cameron, A. G. W. (1982) Elementary and nuclidic abundances in the solar system, in Essays in Nuclear Astrophysics, edited by C. A. Barnes, D. N. Schramm, and D. D. Clayton, 459 pp., Cambridge University Press, Oxford.

    Google Scholar 

  • Cameron, A. G. W., and Pine, M. R. (1973) Numerical models of the primitive solar nebula, Icarus 18, 377–406.

    Article  Google Scholar 

  • Charlu, T. V., Newton, R. C. and Kleppa, O. J. (1981)Thermochemistry of synthetic Ca2A12SiO1 (gehlenite) Ca2MgSi2O7 (åkermanite) melilites, Geochim. Cosmochim. Acta 45, 1609–1917.

    Google Scholar 

  • Clark, S. P., Jr., Turekian, K. K., and Grossman, L. (1972) Model for the early history of the Earth, in Nature of the Solid Earth, edited by E. C. Robertson, pp. 3–18, McGraw-Hill, New York.

    Google Scholar 

  • Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488.

    Article  Google Scholar 

  • Cressey, G., Schmid, R., and Wood, B. J. (1978) Thermodynamic properties of almandine-grossular garnet solid solutions, Contrib. Mineral Petrol. 67, 397–404.

    Article  Google Scholar 

  • Danckwerth, P. A., and Newton, R. C. (1978) Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-A12O3-SiO2 in the range 900°–l,100°C and A12O3 isopleths of enstatite in the spinel field, Contrib. Mineral. Penrol. 66, 189–201.

    Article  Google Scholar 

  • Davies, G. F., and Dziewonski, A. M. (1975) Homogeneity and constitution of the Earth’s lower mantle and core, Phys. Earth Planet. Int. 10, 336–343.

    Article  Google Scholar 

  • Dermott, S. F. (Ed.) (1978) NATO Advanced Study Institute: The Origin of the Solar System, 668 pp., John Wiley, New York.

    Google Scholar 

  • Dodd, R. T., Jr. (1981) Meteorites: A Petrologic-Chemical Synthesis, 368 pp., Cambridge University Press, Cambridge.

    Google Scholar 

  • Drozd, R. J., and Podosek, F. A. (1976) Primordial 129Xe in meteorites, Earth Planet. Sei. Lett. 31, 15–30.

    Article  Google Scholar 

  • Dziewonski, A., Hales, A., and Lapwood, E. (1975) Parametrically simple earth models consistent with geophysical data, Phys. Earth Planet. Int. 10, 12–48.

    Article  Google Scholar 

  • Eriksson, G. (1975) Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, a computer program for calculation of equilibrium compositions in multiphase systems, Chem. Scr. 8, 100–103.

    Google Scholar 

  • Eriksson, G., and Rosen, E. (1973) Thermodynamic studies of high temperature equilibria. VIII. General equations for the calculation of equilibria in multiphase systems, Chem. Scr. 4, 193–194.

    Google Scholar 

  • Eucken, A. (1944) Physikalische-Chemische Betrachtungen über der früheste Entwick-lungsgeschichte der Erde, Nach. Akad. Wiss. Göttingen, Math-Phys. K1. 1, 1–25.

    Google Scholar 

  • Eugster, H. P., Albee, A. L., Bence, A. E., Thompson, J. B. Jr., and Waldbaum, D. R. (1972) The two-phase region and excess mixing properties of paragonite-muscovite crystalline solutions, J. Petrol. 13, 147–179.

    Google Scholar 

  • Fegley, B., Jr., and Lewis, J. S. (1980) Volatile element chemistry in the solar nebula: Na, K, F, CI, Br and P, Icarus, 41, 439–455.

    Article  Google Scholar 

  • Ferry, J. M., and Spear, F. S. (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet, Contrib. Mineral. Petrol. 66, 113–117.

    Article  Google Scholar 

  • Fujii, T. (1977) Fe-Mg partitioning between olivine and spinel. Carnegie Inst. Wash. Yearb. 76, 563–569.

    Google Scholar 

  • Fujii, T., and Scarfe, C. M. (1982) Equilibration experiments on natural peridotite and basalt: recalibration of the olivine-spinel geothermometer. EOS 63, 471.

    Google Scholar 

  • Ganguly, J. (1979) Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient, Geochim. Cosmochim. Acta 43, 1021–1029.

    Article  Google Scholar 

  • Ganguly, J., and Saxena, S. K. (1984) Mixing properties of alumino silicate garnets: constraints from natural and experimental data, and applications to geothermo-barometry, Amer. Mineral. 69, 88–97.

    Google Scholar 

  • Gasparik, T. (1981) Mixing properties of the dioside-jadeite solid solution, Geol. Soc. Amer. Abstr. 13, 456–457.

    Google Scholar 

  • Goettel, K. A., and Barshay, S. S. (1978) The chemical equilibrium model for condensation in the solar nebula: assumptions, implications, and limitations, in The Origin of the Sol System, edited by S. F. Dermott, pp. 611–627, John Wiley, New York.

    Google Scholar 

  • Grossman, L. (1972) Condensation in the primitive solar nebula, Geochim. Cosmochim. Acta 36, 597–619.

    Article  Google Scholar 

  • Grossman, L., and Clark, S. P., Jr. (1973) High-temperature condensates in chondrites and the environment in which they formed, Geochim. Cosmochim. Acta 37, 635–649.

    Article  Google Scholar 

  • Grossman, L., and Larimer, J. W. (1974) Early chemical history of the solar system, Rev. Geophys. Space Phys. 12, 71–101.

    Article  Google Scholar 

  • Grossman, L., and Olsen, E. (1974) Origin of the high-temperature fraction of C2 chondrites, Geochim. Cosmochim. Acta 38, 173–187.

    Article  Google Scholar 

  • Gubbins, D. (1974) Theories of the geomagnetic and solar dynamos, Rev. Geophys. Space Phys. 12, 129–137.

    Article  Google Scholar 

  • Gubbins, D., Masters, T. G., and Jacobs, J. A. (1979) Thermal evolution of the Earth’s core, Geophys. J. Roy. Astron. Soc. 59, 57–99.

    Google Scholar 

  • Guggenheim, E. A. (1967) Thermodynamics, an Advanced Treatment for Chemists and Physicists, 390 pp., North-Holland, Amsterdam.

    Google Scholar 

  • Haselton, H. T., and Newton, R. C. (1980) Thermodynamics of pyrope-grossular garnets and their stabilities at high temperatures and high pressures, J. Geophys. Res. 85, 6973–6982.

    Article  Google Scholar 

  • Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals, Amer. J. Sci. 278–A, 1–229.

    Google Scholar 

  • Herzberg, C. T. (1978) Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-A12O3-SiO2, Geochim. Cosmochim. Acta 42, 945–957.

    Article  Google Scholar 

  • Hoyle, F. (1960) On the origin of the solar nebula, Q. J. Roy. Astron. Soc. 1, 28–55.

    Google Scholar 

  • Hoyle, F., and Wickramasinghe, N. C. (1968) Condensation of the planets, Nature (London) 217, 415–418.

    Article  Google Scholar 

  • Hutchison, R., Paul, D. K., and Harris, P. G. (1970) Chemical composition of the upper mantle, Mineral. Mag. 37, 726–729.

    Article  Google Scholar 

  • Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B. Lorenz, V., and Wänke, H. (1979) The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules, Geochim. Cosmochim. Acta, Suppl. 11, 2031–2050.

    Google Scholar 

  • JANAF Thermochemical Tables with Supplements (1971,1974,1975,1978,1982) National Bureau of Standards of the U.S. Department of commerce, Washington, D. C.

    Google Scholar 

  • Jenkins, D. M., and Newton, R. C. (1979) Experimental determination of the spinel peridotite to garnet peridotite inversion at 900°C and 1,000°C in the system CaO-MgO-A12O3-SiO2 and at 900°C with natural garnet and olivine, Contrib. Mineral. Petrol 68, 407–419.

    Article  Google Scholar 

  • Kerrick, D. M., and Darken, L. S. (1975) Statistical thermodynamic models for ideal oxide and silicate solid solutions, with application to plagioclase, Geochim. Cosmochim. Acta 39, 1431–1442.

    Article  Google Scholar 

  • Kubaschewski, O. (1982) Iron—Binary Phase Diagrams, 185 pp., Springer-Verlag, Berlin.

    Google Scholar 

  • Kubaschewski, O., and Alcock, C. B. (1979) Metallurgical Thermochemistry, 449 pp., Pergamon Press, Oxford.

    Google Scholar 

  • Kushiro, I., and Yoder, H. S., Jr. (1966) Anorthite-forsterite and anorthite-enstatite reactions and their bearing on the basalt-eclogite transformation, J. Petrol. 7, 337–362.

    Google Scholar 

  • Lane, D. L., and Ganguly, J. (1980) A1203 solubility in orthopyroxene in the system MgO-A12O3-SiO2: a reevaluation, and mantle geotherm, J. Geophys. Res. 85, 6963–6972.

    Article  Google Scholar 

  • Larimer, J. W. (1967) Chemical fractionations in meteorites—I. Condensation of the elements, Geochim. Cosmochim. Acta 31, 1215–1238.

    Article  Google Scholar 

  • Larimer, J. W. (1973) Chemical fractionations in meteorites—VII. Cosmothermometry and cosmobarometry, Geochim. Cosmochim. Acta 37, 1603–1623.

    Article  Google Scholar 

  • Larimer, J. W., and Anders, E. (1967) Chemical fractionations in meteorites—II. Abundance patterns and their interpretation, Geochim. Cosmochim. Acta 31, 1239–1270.

    Article  Google Scholar 

  • Larimer, J. W., and Anders, E. (1970) Chemical fractionations in meteorites—III. Major element fractionations in chondrites, Geochim. Cosmocchim. Acta 34, 367–387.

    Article  Google Scholar 

  • Larimer, J. W., and Bartholomay, M. (1979) The role of carbon and oxygen in cosmic gases: some applications to the chemistry and mineralogy of enstatite chondrites, Geochim. Cosmochim. Acta 43, 1455–1466.

    Article  Google Scholar 

  • Levin, B. J. (1972) Origin of the Earth, Tectonophysics 13, 7–29.

    Article  Google Scholar 

  • Lewis, J. S. (1972a) Metal/silicate fractionation in the solar system, Earth Planet. Sci. Lett. 15, 286–290.

    Article  Google Scholar 

  • Lewis, J. S. (1972b) Low-temperature condensation from the solar nebula, Icarus 16, 241–252.

    Article  Google Scholar 

  • Lewis, J. S. (1974) The temperature gradient in the solar nebula, Science 186, 440–443.

    Article  Google Scholar 

  • Lewis, J. S., and Prinn, R. G. (1983) Planets and Their Atmospheres: Origin and Evolution, 470 pp., Academic Press, New York.

    Google Scholar 

  • Lewis, J. S., Barshay, S. S. and Noyes, B. (1979) Primordial retention of carbon by the terrestrial planets, Icarus 37, 190–206.

    Article  Google Scholar 

  • Lindsley, D. H. (1980) Phase equilibria of pyroxenes at pressures > 1 atmosphere, Rev. Mineral. 7, 289–307.

    Google Scholar 

  • Lindsley, D. H. (1983) Pyroxene thermometry. Amer. Mineral. 68, 477–493.

    Google Scholar 

  • Lindsley, D. H., Grover, J. E., and Davidson, P. M. (1981). The thermodynamics of the Mg2Si2O6-CaMgSi2O6 join: a review and an improved model, Adv. Phys. Geochem. 1, 149–175.

    Google Scholar 

  • Loper, D. E. (1978) Some thermal consequences of a gravitationally powered dynamo, J. Geophys. Res. 83, 5969–5970.

    Article  Google Scholar 

  • Lord, H. C., III (1965) Molecular equilibria and condensation in a solar nebula and cool stellar atmospheres, Icarus 4, 279–288.

    Article  Google Scholar 

  • Lyttleton, R. A. (1982) The Earth and Its Mountains, 206 pp., John Wiley, New York.

    Google Scholar 

  • Mah, A. D., and Pankratz, L. B. (1976) Contributions to the data on theoretical metallurgy. XVI. Thermodynamic properties of nickel and its inorganic compounds, Bull 668,125 pp., U.S., Bur. Mines, Washington, D.C.

    Google Scholar 

  • Morgan, J. W., and Anders, E. (1980) Chemical composition of Earth, venus and Mercury, Proc. Natl. Acad. Sci. U.S.A. 77, 6973–6977.

    Article  Google Scholar 

  • Mueller, R. F. (1963) A comparison of oxidative equilibria in meteorites and terrestrial rocks, Geochim. Cosmochim. Acta 27, 273–278.

    Article  Google Scholar 

  • Mueller, R. F. (1972) Stability of biotite: a discussion, Amer. Mineral. 57, 300–316.

    Google Scholar 

  • Mueller, R. F., and Saxena, S. K. (1977) Chemical Petrology with Applications to the Terrestrial Planets and Meteorites, 394 pp., Springer-Verlag, New York.

    Google Scholar 

  • Murthy, V. R., and Hall, H. T. (1970) The chemical composition of the Earth’s core: possibility of sulphur in the core, Phys. Earth Planet. Int. 2, 276–282.

    Article  Google Scholar 

  • Newton, R. C., Charlu, T. V., and Kleppa, O. J. (1980) Thermochemistry of the high structural state plagioclases, Geochim. Cosmochim. Acta 44, 933–941.

    Article  Google Scholar 

  • Orville, P. M. (1972) Plagioclase cation exchange equilibria with aqueous chloride solution: results at 700°C and 2000 bars in the presence of quartz, Amer. J. Sci. 272, 234–272.

    Article  Google Scholar 

  • Perchuk, L. L., and LavrentLavrent’ev’eva, I. V. (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite, Adv. Phys. Geochem. 3, 199–239.

    Google Scholar 

  • Perchuk, L. L., Podlesskii, K. K., and Aranovich, L. Ya. (1981) Calculation of thermody-namic properties of end-member minerals from natural parageneses, Adv. Phys. Geochem. 1, 111–129.

    Google Scholar 

  • Perkins, D., Ill, and Newton, R. C. (1980) The compositions of coexisting pyroxenes and garnet in the system CaO-MgO-A12O3-SiO2 at 900°–1,100°C and high pressures, Contrib. Mineral. Petrol. 75, 291–300.

    Article  Google Scholar 

  • Perkins, D., III, Holland, T. J. B., and Newton, R. C. (1981). The A1203 contents of enstatite in equilibrium with garnet in the system MgO-A12O3-SiO2 at 15–40 kbar and 900°–l,600°C, Contrib. Mineral. Petrol. 78, 99–109.

    Article  Google Scholar 

  • Reeves, H. (1978) The origin of the solar system, in The Origin of the Solar System, edited by S. F. Dermott, pp. 1–18, John Wiley, New York.

    Google Scholar 

  • Ringwood, A. E. (1966) Chemical evolution of the terrestrial planets, Geochim. Cosmochim. Acta 30, 41–104.

    Article  Google Scholar 

  • Ringwood, A. E. (1977) Composition of the core and implications for the origin of the earth, Geochem. J. 11, 111–135.

    Article  Google Scholar 

  • Ringwood, A. E. (1979) Origin of the Earth and Moon, 295 pp., Springer-Verlag, New York.

    Google Scholar 

  • Ringwood, A. E., and Kesson, S. E. (1977) Basaltic magmatism and the bulk composition of the Moon, II. Siderophile and volatile elements in Moon, Earth and chondrites: Implications for lunar origin, The Moon 16, 425–464.

    Article  Google Scholar 

  • Robie, R. A., Hemingway, B. S., and Fisher J. R. (1978) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, U.S. Geol. Surv. Bull. 1452, 456 pp.

    Google Scholar 

  • Ryzhenko, B., and Kennedy, G. C. (1973) The effect of pressure on the eutectic in the system Fe-FeS, Amer. J. Sci. 273, 803–810.

    Article  Google Scholar 

  • Sack, R. O. (1980) Some constraints on the thermodynamic mixing properties of Fe-Mg orthopyroxenes and olivines, Contrib. Mineral. Petrol. 71, 257–269.

    Article  Google Scholar 

  • Saxena, S. K. (1968) Chemical study of phase equilibria in charnockites, Varberg, Sweden, Amer. Mineral. 53, 1674–1695.

    Google Scholar 

  • Saxena, S. K. (1971) Mg2+-Fe2+ order-disorder in orthopyroxene and the Mg2+-Fe2+ distribution between coexisting minerals, Lithos 4, 345–354.

    Article  Google Scholar 

  • Saxena, S. K. (1973) Thermodynamics of Rock-Forming Crystalline Solutions, 188 pp., Springer-Verlag, New York.

    Google Scholar 

  • Saxena, S. K. (1981a) The MgO-A12O3-Si02 system: free energy of pyrope and A12O3-enstatite, Geochim. Cosmochim. Acta 45, 821–825.

    Article  Google Scholar 

  • Saxena, S. K. (1981b) Fictive component model of pyroxenes and multicomponent phase equilibria, Contrib. Mineral Petrol 78, 345–351.

    Article  Google Scholar 

  • Saxena, S. K., and Chatterjee, N. (1986) Thermochemical data on mineral phases. I. The system CaO-MgO-Al2O3-SiO2, J. Petrol (In press)

    Google Scholar 

  • Saxena, S. K., and Ghose, S. (1971) Mg2+-Fe2+ order-disorder and the thermodynamics of the orthopyroxene crystalline solution, Amer. Mineral. 56, 532–559.

    Google Scholar 

  • Saxena, S. K., and Ribbe, P. H. (1972) Activity-composition relations in feldspars, Contrib. Mineral Petrol 37, 131–138.

    Article  Google Scholar 

  • Saxena, S. K., and Eriksson, G. (1983a) High temperature phase equilibria in a solar- composition gas, Geochim. Cosmochim. Acta 47, 1865–1874.

    Article  Google Scholar 

  • Saxena, S. K., and Eriksson, G. (1983b) Low to medium-temperature phase equilibria in a gas of solar composition, Earth and Planet Sci. Lett. 65, 7–17.

    Article  Google Scholar 

  • Sears, D. W. (1978) The Nature and Origin of Meteorites, 187 pp., Oxford University Press, New York.

    Google Scholar 

  • Smith, W. R., and Missen, R. W. (1982) Chemical Reaction Equilibrium Analysis, 364 pp., Wiley-Interscience, New York.

    Google Scholar 

  • Spencer, K. J., and Lindsley, D. H. (1981) A solution model for coexisting iron-titanium oxides, Amer. Mineral 66, 1189–1201.

    Google Scholar 

  • Stacey, F. D. (1972) Physical properties of the Earth’s core, Geophys. Surv. 1, 99.

    Article  Google Scholar 

  • Stacey, F. D. (1977) Physics of the Earth, 414 pp., John Wiley, New York.

    Google Scholar 

  • Tozer, D. C. (1978) Terrestrial planet evolution and the observation consequences of their formation, in The Origin of Solar System, edited by S. F. Dermott, pp. 433–462, John Wiley, New York.

    Google Scholar 

  • Turekian, K. K., and Clark, S. P. Jr. (1969) Inhomogeneous accretion of the Earth from the primitive solar nebula, Earth Planet. Sci. Lett. 6, 346–348.

    Article  Google Scholar 

  • Turekian, K. K., and Clark, S. P., Jr. (1975) The non-homogeneous accumulation model for terrestrial planet formation and the consequences for the atmosphere of Venus, J. Atmos. Sci. 32, 1257–1261.

    Article  Google Scholar 

  • Turnock, A. C., and Lindsley, D. H. (1981) Experimental determination of pyroxene solvi for 2A7D 1 kbar at 900 and 1000°C, Can. Mineral 19, 255–267.

    Google Scholar 

  • Urey, H. C. (1952) The Planets: Their Origin and Development, 245 pp., Yale University Press, New Haven.

    Google Scholar 

  • Usselman, T. M. (1975) Experimental approach to the state of the core: Part II. Composition and thermal regime, Amer. J. Sci. 275, 291–303.

    Article  Google Scholar 

  • Verhoogen, J. (1961) Heat balance of the Earth’s core. Geophys. J. 4, 276–281.

    Article  Google Scholar 

  • Verhoogen, J. (1973) Thermal regime of the Earth’s core. Phys. Earth Planet. Int. 7, 47–58.

    Article  Google Scholar 

  • Wänke, H. (1981) Constitution of terrestrial planets, Phil Trans. Roy. Soc. London, Ser. A 303, 287–302.

    Article  Google Scholar 

  • Wanke, H., Baddenhausen, H., Palme, H., and Spettel, B. (1974) On the chemistry of the Allende inclusions and their origin as high temperature condensates, Earth Planet. Sci. Lett. 23, 1–7.

    Article  Google Scholar 

  • Weidenschilling, S. J. (1977) The distribution of mass in the planetary system and solar nebula, Astrophys. Space Sci. 51, 153–158.

    Article  Google Scholar 

  • Wohl, K. (1953) Thermodynamic evaluation of binary and ternary liquid systems, Chem. Eng. Prog. 49, 218–219.

    Google Scholar 

  • Wood, B. J., and Kleppa, O. J. (1981) Thermochemistry of forsterite-fayalite olivine solutions, Geochim. Cosmochim. Acta 45, 529–534.

    Article  Google Scholar 

  • Wood, J. A. (1962) Chondrules and the origin of the terrestrial planets. Nature (London) 194, 127–130.

    Article  Google Scholar 

  • Woolfson, M. M. (1978) Star formation and interactions between stars, in The Origin of the Solar System, edited by S. F. Dermott, pp. 163–178, John Wiley, New York.

    Google Scholar 

  • Yamada, H., and Takahashi, E. (1982) Subsolidus phase relations between coexisting garnet and pyroxenes at 50 to 100 kbar in the system CaO-MgO-A12O3-SiO2, Terra Cognita 2, 260–261.

    Google Scholar 

  • Zen, E-An (1972) Gibbs free energy, enthalpy, and entropy of ten rock-forming minerals: calculations, discrepancies, implications, Amer. Mineral. 57, 524–553.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Saxena, S.K., Eriksson, G. (1986). Chemistry of the Formation of the Terrestrial Planets. In: Saxena, S.K. (eds) Chemistry and Physics of Terrestrial Planets. Advances in Physical Geochemistry, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4928-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4928-3_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9363-7

  • Online ISBN: 978-1-4612-4928-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics