Skip to main content

Control of Cell Differentiation and Morphogenesis by Activins During Early Amphibian Development

  • Chapter
Inhibin, Activin and Follistatin

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 87 Accesses

Abstract

During early vertebrate development, the embryonic body plan is established by cell proliferation, migration, and differentiation. The mechanisms of patterning are complex and likely include multiple so-called induction events. Recent studies of this aspect of developmental biology have been remakably enhanced by the techniques of molecular biology. Most noteworthy is the molecular identification of inducing factors, which are closely associated with determination of the early embryonic axis. Foremost among these are several cell growth factors, including fibroblast growth factors (FGFS) and transforming growth factor-beta (TGF-β).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spemann H, Mangold H. Über Induktion von Embryonalanlagen dürch Implantation artfremder Organisatoren. Arch Mikrosk Anat Entwicklungsmech 1924;100:599–638.

    Article  Google Scholar 

  2. Nieuwkoop P. The formation of mesoderm in urodelan amphibians. Part 1. Induction by the endoderm. Wilhelm Roux’Arch Entwicklungsmech Org 1969;162:341–73.

    Article  Google Scholar 

  3. Tiedemann H, Asashima M, Born J, Grunz H, Knöchel W, Tiedemann H. Determination, induction and pattern formation in early amphibian embryos. Dev Growth Differ 1996;38:233–6.

    Article  Google Scholar 

  4. Asashima M, Nakano H, Shimada K, Kinoshita K, Shibai H, Ueno N. Mesodermal induction in early amphibian embryos by activin A erythroid differentiation factor. Wilhelm Roux’s Arch Dev Biol 1990;198:330–5.

    Article  CAS  Google Scholar 

  5. Asashima M, Nakano H, Uchiyama H, Sugino H, Nakamura T, Eto Y, et al. Presence of activin (erythroid differentiation factor) in unfertilized eggs and blastulae of Xenopus laevis. Proc Natl Acad Sci USA 1991;88:6511–4.

    Article  PubMed  CAS  Google Scholar 

  6. Fukui A, Nakamura T, Uchiyama H, Sugino K, Sugino H, Asashima M. Identification of activins A, AB, and B and follistatin proteins in Xenopus embryos. Dev Biol 1994;163:279–81.

    Article  PubMed  CAS  Google Scholar 

  7. Uchiyama H, Nakamura T, Komazaki S, Takio K, Asashima M, Sugino H. Localization of activin and follistatin proteins in the Xenopus oocyte. Bichem Biophys Res Commun 1994;202:484–9.

    Article  CAS  Google Scholar 

  8. Dohrmann CE, Hemmati-Brivanlou A, Thomsen GH, Fields A, Woolf TM, Melton DA. Expression of activin mRNA during early development in Xenopus laevis. Dev Biol 1993;157:474–83.

    Article  PubMed  CAS  Google Scholar 

  9. Okabayashi K, Shoji H, Nakamura O, Nakamura T, Hashimoto O, Asashima M, Sugino H. cDNA cloning and expression of the Xenopus laevis vitellogenin receptor. Biochem Biophys Res Commun 1996;24:406–13.

    Article  Google Scholar 

  10. Slack JM. Inducing factors in Xenopus early embryos. Curr Biol 1994;4:116–26.

    Article  PubMed  CAS  Google Scholar 

  11. Kimelman D, Kirschner M. Synergistic induction of mesdoerm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 1987;51:869–77.

    Article  PubMed  CAS  Google Scholar 

  12. Ariizumi T, Moriya N, Uchiyama H, Asashima M. Concentration-dependent inducing activity of activin A. Wilhelm Roux’s Arch Dev Biol 1991;200:230–3.

    Article  CAS  Google Scholar 

  13. Green JB, Smith JC. Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature (Lond) 1990;347:391–4.

    Article  CAS  Google Scholar 

  14. Ariizumi T, Komazaki S, Asashima M, Malacinski GM. Activin-treated urodele ectoderm: a model experimental system for cardiogenesis. Int J Dev Biol 1996;40:715–8.

    PubMed  CAS  Google Scholar 

  15. Uochi T, Asashima M. Sequential gene expression during pronephric tubule formation in vitro in Xenopus ectoderm. Dev Growth Differ 1996;(in press).

    Google Scholar 

  16. Mangold O. Über die Inductionsfôhigkeit der veersichidenen Bezirke der Neurula von Urodelen. Naturwissenschaften 1933;21:761–6.

    Article  Google Scholar 

  17. Ariizumi T, Asashima M. Head and trunk-tail organizing effects of the gastrula ectoderm of Cynops pyrrogaster after treatment with activin A. Wilhelm Roux’s Arch Dev Biol 1995;204:427–35.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Asashima, M., Uochi, T., Kinoshita, K., Nishihara, R., Ariizumi, T., Fukui, A. (1997). Control of Cell Differentiation and Morphogenesis by Activins During Early Amphibian Development. In: Aono, T., Sugino, H., Vale, W.W. (eds) Inhibin, Activin and Follistatin. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1874-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1874-6_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7320-2

  • Online ISBN: 978-1-4612-1874-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics