Skip to main content
Log in

The formation of the mesoderm in urodelean amphibians

I. Induction by the endoderm

  • Published:
Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen Aims and scope Submit manuscript

Summary

The blastula [stage 8+ to 8/9 (Harrison)] ofAmbystoma mexicanum was subdivided into four successive animal-vegetative zones and the relative amounts of cellular material present in the successive zones were determined. The developmental capacities of the isolates I, II, III, IV, and I.II and III.IV as well as of the various recombinates of three of the four and of all four zones were studied, and their quantitative composition at the end of the culture period was determined. To this end the embryos were allowed to develop for only 5 to 6 days, during which period the primary organization and initial differentiation was accomplished, but without the appearance of marked changes in the volumes of the different components, which would have occurred upon extensive decomposition of intracellular yolk and subsequent cytoplasmic growth during a longer period of development.

Comparing the differentiation of the recombinates with that of the corresponding isolates — in particular the recombinate I.II.IV with the isolates I, II and IV — it was concluded that the mesoderm arises as a result of an interaction between the pigmented, ectodermal and the unpigmented, endodermal ”halves“ of the egg, which initially [before stage 7 (Harrison)] constitute the only two components of the egg. A comparison of the quantitative composition of the recombinates with that of the corresponding isolates yielded strong arguments in favour of the statement thatthe mesoderm develops exclusively from the ectodermal “half” of the egg under the influence of an inductive action from the part of the endodermal “half”. This statement was further corroborated by arguments collected from the literature.

Whereas neither the endoderm nor the ectoderm alone are initially able to differentiate beyond a certain point — so-called atypical ectodermal and endodermal differentiation respectively — their interaction product, the mesoderm, apparently contains the information needed for differentiation into the characteristic mesodermal structures. Influences emanating from the differentiating mesoderm then enable both the ectoderm and the endoderm to proceed further on their path of differentiation.

The role of the blastocoelic cavity — a cavity with a negative morphogenetic function — in thespatial interaction between the two primary components of the egg was elucidated. In the light of the conclusions mentioned above the centrifugation experiments ofPasteels (1953, 1954) were reinterpreted, whileSchultze's „Umkehrexperiment“ byPenners andSchleip (1928),Penners (1929) andPasteels (1938, 1939) andCurtis' cortical grafting experiments (1960, 1962) were briefly discussed. The hypothesis was then advanced that the inductive interactions taking place in the early embryo preferentially spread through the most superficial layer of the egg, where the cells are tightly connected with each other. Finally, thetemporal aspects of mesoderm induction were discussed in relation to observations collected from the literature.

Some parallels were indicated between the morphogenetic events taking place in early amphibian development, and recent biochemical observations on RNA and protein synthesis before the onset of gastrulation.

Finally a general picture was drawn of the development of the amphibian egg on the basis of the principle of a stepwise increase in multiplicity by means of inductive interactions.

Zusammenfassung

Die Blastula vonAmbystoma mexicanum (Stadium 8+—8/9 von Harrison) wurde in vier animal-vegetativ aufeinanderfolgende Zonen zerteilt, von denen die relativen Materialmengen bestimmt wurden. Das Entwicklungsvermögen der Isolate I, II, III, IV, und I.II und III.IV sowie auch der verschiedenen Rekombinate aus je drei von den vier und allen vier Zonen wurde untersucht und ihre quantitative Zusammensetzung am Ende der Kulturperiode bestimmt. Die Kulturperiode war nur 5–6 Tage lang, was für die primäre Organisation und die erste Differenzierung genügte, ohne daß ausgedehnter intrazellulärer Dotterabbau und das darauffolgende plasmatische Wachstum zu erheblichen Änderungen in den Materialmengen der unterschiedlichen Komponenten führen konnten.

Der Vergleich zwischen der Differenzierung der Bekombinate einerseits und der entsprechenden Isolate anderseits — besonders zwischen den I.II.IV Rekombinaten und den Isolaten I, II und IV — führte zur Schlußfolgerung, daß das Mesoderm entsteht als Folge einer Wechselwirkung zwischen der pigmentierten, ektodermalen „Hälfte“ und der unpigmentierten, entodermalen „Hälfte“ des Keims, also zwischen den anfangs (vor Stadium 7 von H.) einzigen zwei Komponenten des Keims. Der Vergleich der quantitativen Zusammensetzung der Bekombinate einerseits und der entsprechenden Isolate anderseits ergab überzeugende Argumente für die Auffassung, daßdas Mesoderm ausschlieβlich aus der eldodermalen „Hälfte“ des Keims hervorgeht, und zwar unter dem Einfluβ einer Induktionswirkung von Seiten der entodermalen „Hälfte“. Diese Auffassung wurde weiter mit Argumenten aus dem Schrifttum belegt.

Während weder das Ektoderm noch das Entoderm an sich anfangs zur Differenzierung über einem gewissen Punkt hinaus im Stande sind — die sog. atypische ektodermale bzw. entodermale Differenzierung —, enthält das Produkt ihrer Wechselwirkung, das Mesoderm, offenbar vom Anfang an alle Informationen, die zur Bildung typischer mesodermaler Strukturen benötigt werden. Einflüsse von seiten des sich differenzierenden Mesoderms ermöglichen es dann sowohl dem Ektoderm als dem Entoderm, ihre Differenzierung weiter zu verfolgen.

Es wurde die Bolle der Blastocoelhöhle — einer Höhle mit negativer morphogenetischer Funktion — in derräumlichen Wechselwirkung zwischen den beiden primären Komponenten des Keims erläutert. Im Lichte der obigen Folgerungen wurden dann die Zentrifugierungsexperimente vonPasteels (1953, 1954) neu interpretiert, während das Schultzesche Umkehrexperiment durchPenners undSchleip (1928),Penners (1929) undPasteels (1938, 1939) und die „cortical grafting“ Experimente vonCurtis (1960, 1962) kurz diskutiert wurden. Sodann wurde die Hypothese aufgestellt, daß die induktiven Wechselwirkungen im frühen Keim sich vorzugsweise durch die meist oberflächliche Keimschicht verbreiten, wo die Zellen innig miteinander verbunden sind. Schließlich wurden diezeitlichen Aspekte der Mesoderminduktion im Zusammenhang mit dem Schrifttum besprochen.

Es wurden einige Parallelen aufgezeigt zwischen den früh im Amphibienkeim eintretenden morphogenetischen Ereignissen einserseits und rezenten Befunden über RNS und Proteinsynthese vor dem Anfang der Gastrulation anderseits.

Schließlich wurde ein allgemeines Bild der Keimentwicklung bei Amphibien skizziert, das sich stützt auf das Prinzip einer stufenweise vor sich gehenden Zunahme der Vielfältigkeit mittels induktiver Wechselwirkungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Curtis, A. S. G.: Cortical grafting inXenopus laevis. J. Embryol. exp. Morph.8, 163–173 (1960).

    Google Scholar 

  • —: Morphogenetic interactions before gastrulation in the amphibian,Xenopus laevis — the cortical field. J. Embryol. exp. Morph.10, 410–422 (1962).

    Google Scholar 

  • Davidson, E. H., M. Crippa, andA. E. Mirsky: Evidence for the appearance of novel gene products during amphibian blastulation. Proc. nat. Acad. Sci. (Wash.)60, 152–159 (1968).

    Google Scholar 

  • Engländer, H.: Die Differenzierungsleistungen desTriturus- undAmbystoma-Ektoderms unter der Einwirkung von Knochenmark. Wilhelm Roux' Arch. Entwickl.-Mech. Org.154, 143–159 (1962).

    Google Scholar 

  • Gebhardt, D. O. E., andP. D. Nieuwkoop: The influence of lithium on the competence of the ectoderm inAnibystoma mexicanum. J. Embryol. exp. Morph.12, 317–331 (1964).

    Google Scholar 

  • Gross, P. R.: The control of protein synthesis in embryonic development and differentiation. Curr. Topics develop. Biol.2, 1–16 (1967).

    Google Scholar 

  • Grunz, H.: Experimentelle Untersuchungen über die Kompetenzverhältnisse früher Entwicklungsstadien des Amphibien-Ektoderms. Wilhelm Roux' Archiv160, 344–374 (1968).

    Google Scholar 

  • Hörstadius, S.: Gradients of metabolism in sea urchin eggs and larvae. Symp. genet. biol. ital.9, 15 p. (1962).

  • Holtfreter, J.: Differenzierungspotenzen isolierter Teile der Urodelengastrula. Wilhelm Roux' Arch. Entwickl.-Mech. Org.138, 522–656 (1938).

    Google Scholar 

  • —: Properties and functions of the surface coat in amphibian embryos. J. exp. Zoll.93, 251–323 (1943).

    Google Scholar 

  • Karasake, S., andT. Yamada: Morphogenetic effects of centrifugation on the isolated ectoderm and whole embryo of some anurans. Experientia (Basel)11, 191 (1955).

    Google Scholar 

  • Leikola, A.: The mesodermal and neural competence of isolated gastrula ectoderm studied by heterogenous inductors. Ann. zool. Soc. fenn. “Vanamo“25, 50 p. (1963).

    Google Scholar 

  • —: On the loss of mesodermal competence of theTriturus gastrula ectodermin vivo. Experientia (Basel)21, 458 (1965).

    Google Scholar 

  • Masui, Y.: Mesodermal and endodermal differentiation of the presumptive ectoderm ofTriturus gastrula through influence of lithium ion. Experientia (Basel)17, 458 (1961).

    Google Scholar 

  • Nakamura, O., andT. Matsuzawa: Differentiation capacity of the marginal zone in the morula and blastula ofTritmus pyrrhogaster. Embryologia9, 223–237 (1967).

    Google Scholar 

  • Nieuwkoop, P. D.: Experimental investigations on the origin and determination of the germ cells, and on the development of the lateral plates and germ ridges in Urodeles. Arch. néerl. Zool.8, 1–205 (1947).

    Google Scholar 

  • — and others: Activation and organization of the central nervous system in amphibians. Part I. Induction and activation. Part II. Differentiation and organization. Part. III. Synthesis of a new working hypothesis. J. exp. Zool.120, 1–108 (1952).

    Google Scholar 

  • Ôgi, K.-I.: Vegetalization of the presumptive ectoderm of theTriturus-gastrula, by exposure to lithium chloride solution. Embryologia5, 384–396 (1961).

    Google Scholar 

  • —: Determination in the development of the amphibian embryo. Sci. Rep. Tôhoku Univ., Ser. Biol.33, 239–247 (1967).

    Google Scholar 

  • Okada, T. S.: Experimental studies on the differentiation of the endodermal organs in Amphibia. I. Significance of the mesenchymatous tissue to the differentiation of the presumptive endoderm. Mem. Coll. Sci. Univ. Kyoto, Ser. B21, 1–6 (1954a).

    Google Scholar 

  • —: Experimental studies on the differentiation of the endodermal organs in Amphibia. II. Differentiating potencies of the presumptive endoderm in the presence of the mesodermal tissues. Mem Coll. Sci. Univ. Kyoto, Ser. B21, 7–14 (1954b).

    Google Scholar 

  • —: Experimental studies on the differentiation of the endodermal organs in Amphibia. III. The relation between the differentiation of pharynx and head-mesenchyme. Mem. Coll. Sci. Univ. Kyoto, Ser. B22, 17–22 (1955a).

    Google Scholar 

  • —: Experimental studies on the differentiation of the endodermal organs in Amphibia. IV. The differentiation of the intestine from the fore-gut. Annot. zool. japon.28, 210–214 (1955b).

    Google Scholar 

  • Pasteels, J.: Recherches sur les facteurs initiaux de la morphogénèse chez les amphibiens anoures. I. Résultats de l'expérience de Schultze et leur interprétation. Arch. Biol. (Liège)49, 629–667 (1938).

    Google Scholar 

  • —: Recherches sur les facteurs initiaux de la morphogénèse chez les amphibiens anoures. II. Lèvres blastoporales successives dans un même oeuf. Arch. Biol. (Liège)50, 291–320 (1939).

    Google Scholar 

  • —: Les effets de la centrifugation sur la blastula et la jeune gastrula des amphibiens. I. Mécanisme de la formation des organes secondaires aux dépens de l'ectoblaste. J. Embryol. exp. Morph.1, 5–24 (1953a).

    Google Scholar 

  • —: Les effets de la centrifugation sur la blastula et la gastrula des amphibiens. II. Étude comparative de la sensibilité en fonction des stades et des espèces. J. Embryol. exp. Morph.1, 125–145 (1953b).

    Google Scholar 

  • —: Les effets de la centrifugation sur la blastula et la jeune gastrula des amphibiens. III. Interactions entre ébauches primaires et secondaires. IV. Discussion générale et conclusions. J. Embryol. exp. Morph.2, 122–148 (1954).

    Google Scholar 

  • —: The morphogenetio role of the cortex of the amphibian egg. Advanc. Morphogenes.3, 363–388 (1964).

    Google Scholar 

  • Paterson, M. C.: Animal-vegetal balance in amphibian development. J. exp. Zool.134, 183–205 (1957).

    Google Scholar 

  • Penners, A.: Schultzescher Umdrehungsversuch an ungefurchten Froscheiern. Wilhelm Roux' Arch. Entwickl.-Mech. Org.116, 53–103 (1929).

    Google Scholar 

  • -Penners, A. u. W.Schleip: Die Entwicklung der Schultzeschen Doppelbildungen aus dem Ei vonRana fusca. Teil I–IV. Z. wiss. Zool.130, 305–454; Teil. V–VI. Z. wiss. Zool.131, 1–156 (1928).

  • Runnström, J.: Considerations on the control of differentiation in the early sea urchin development. Arch. zool. ital.51, 239–272 (1966).

    Google Scholar 

  • Ruud, G.: Die Entwicklung isolierter Keimfragmente frühester Stadien vonTriton taeniatus. Wilhelm Roux' Arch. Entwickl.-Mech. Org.105, 209–293 (1925).

    Google Scholar 

  • Shiokawa, K., andK. Yamana: Inhibitor of ribosomal RNA synthesis inXenopus laevis embryos. Develop. Biol.16, 389–406 (1967).

    Google Scholar 

  • Spemann, H.: Experimentelle Beiträge zu einer Theorie der Entwicklung. Berlin: Springer 1936.

    Google Scholar 

  • Takata, C.: The differentiation in vitro of the isolated endoderm under the influence of the mesoderm inTritums pyrrhogaster. Embryologia5, 38–70 (1960).

    Google Scholar 

  • —, andT. Tamada: Endodermal tissues developed from the isolated newt ectoderm under the influence of guinea pig bone marrow. Embryologia5, 8–20 (1960).

    Google Scholar 

  • Toivonen, S.: Bone-marrow of the guinea-pig as a mesodermal inductor in implantation experiments with embryos ofTriturus. J. Embryol. exp. Morph.1, 97–104 (1953).

    Google Scholar 

  • —: An experimentally produced change in the sequence of neuralizing and mesodermalizing inductive actions. Experientia (Basel)17, 87 (1961).

    Google Scholar 

  • Tseng, Mi-Pai: Time factor in mesoderm induction. Acta Biol. exp. sin.8, 463–476 (1963).

    Google Scholar 

  • Vintemberger, P.: Sur les résultats du développement des quatre micromères isolés au stade de huit blastomères, dans l'oeuf d'un amphibien anoure. C. R. Soc. Biol. (Paris)118, 52–53 (1934a).

    Google Scholar 

  • —: Résultats de l'auto-différenciation des quatre macromères isolés au stade de huit blastomères, dans l'oeuf d'un amphibien anoure. C. R. Soc. Biol. (Paris)117, 693–695 (1934b).

    Google Scholar 

  • —: Sur le développement comparé des micromères de l'oeuf deRana fusca divisé en huit: a) après isolement, b) après transplantation sur un socle de cellules vitellines. C. R. Soc. Biol. (Paris)122, 927–930 (1936).

    Google Scholar 

  • Vogt, W.: Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. II. Gastrulation und Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux' Arch. Entwickl.-Mech. Org.120, 384–706 (1929).

    Google Scholar 

  • Woodland, H. R., andJ. B. Gurdon: The relative rates of synthesis of DNA, sRNA and rRNA in the endodermal region and other parts ofXenopus laevis embryos. J. Embryol. exp. Morph.19, 363–385 (1968).

    Google Scholar 

  • Yamada, T.: Der Determinationszustand des Rumpfmesoderms im Molchkeim nach der Gastrulation. Wilhelm Roux' Arch. Entwickl.-Mech. Org.137, 151–270 (1937).

    Google Scholar 

  • —: Beeinflussung der Differenzierungsleistung des isolierten Mesoderms von Molchkeimen durch zugefügtes Chorda- und Neuralmaterial. Okajimas Folia anat. jap.19, 131–197 (1940).

    Google Scholar 

  • —: Embryonic induction. In: A Symp. on the chemical basis of development, ed. byW. D. McElroy andB. Glass, p. 217–238. Baltimore: Johns Hopkins Press 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieuwkoop, P.D. The formation of the mesoderm in urodelean amphibians. W. Roux' Archiv f. Entwicklungsmechanik 162, 341–373 (1969). https://doi.org/10.1007/BF00578701

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00578701

Keywords

Navigation