Skip to main content
  • 805 Accesses

Abstract

Leaves are among the most specialized of all plant organs, devoting most of their activity to the production of ribulose-l,5-bisphosphate carboxylase-oxygenase (RuBISCO). This key protein is mentioned here to introduce the chapter on leaves not only because of its importance as a primary enzyme for carbon fixation in the initial reaction of photosynthesis, but also to emphasize that all of the, structural and developmental adaptations of leaves are geared to maximize the production of RuBISCO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Brutnell, T.P., and Langdale, J.A. 1998. Signals in leaf development. Adv. Bot. Res. 28: 161–195.

    Article  CAS  Google Scholar 

  • Dale, J.E. 1988. The control of leaf expansion. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 267–295.

    Article  Google Scholar 

  • Poethig, R.S. 1997. Leaf morphogenesis in flowering plants. Plant Cell 9: 1077–1087.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L.G., and Hake, S. 1992. The initiation and determination of leaves. Plant Cell 4: 1017–1027.

    PubMed  Google Scholar 

  • Sylvester, A.W., Smith L., and Freeling, M. 1996. Acquisition of identity in the developing leaf. Annu. Rev. Cell Dev. Biol. 12: 257–304.

    Article  PubMed  CAS  Google Scholar 

  • Tsukaya H. 1995. Developmental genetics of leaf morphogenesis in dicotyledous plants J. Plant Res. 108 407–416

    Google Scholar 

References

  • Battey, N.H., and Lyndon, R.F. 1984. Changes in apical growth and phyllotaxis on flowering and reversion in Impatiens balsaminaL. Ann. Bot. 54: 553–567.

    Google Scholar 

  • Battey, N.H., and Lyndon, R.F. 1988. Determination and differentiation of leaf and petal primordia in Impatiens balsamina. Ann. Bot. 61: 9–16.

    Google Scholar 

  • Becraft, P.W., Bongard-Pierce, D.K., Sylvester, A.W., Poethig, R.S., and Freeling, M. 1990. The liguleless-1gene acts tissue specifically in maize leaf development. Dev. Biol. 141: 220–232.

    Article  PubMed  CAS  Google Scholar 

  • Becraft, P.W., and Freeling, M. 1994. Genetic analysis of rough sheath1developmental mutants of maize. Genetics 136: 295–311.

    PubMed  CAS  Google Scholar 

  • Becraft, P.W., Stinard, P.S., and McCarty, D.R. 1996. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273: 1406–1409.

    Article  PubMed  CAS  Google Scholar 

  • Boetsch J., Chin J., and Croxdale, J. 1995. Arrest of stomatal initials in Tradescantiais linked to the proximity of neighboring stomata and results in the arrested initials acquiring properties of epidermal cells. Dev. Biol. 168: 28–38.

    Article  PubMed  CAS  Google Scholar 

  • Bohmert K., Camus I., Bellini, C, Bouchez D., Caboche M., and Benning, C. 1998. AGO1defines a novel locus of Arabidopsiscontrolling leaf development. EMBO J. 17: 170–180.

    Article  PubMed  CAS  Google Scholar 

  • Bongard-Pierce, D.K., Evans, M.M.S., and Poethig, R.S. 1996. Heteroblastic features of leaf anatomy in maize and their genetic regulation. Int. J. Plant Sci. 157: 331–340.

    Article  Google Scholar 

  • Bowler C., Neuhaus G., Yamagata H., and Chua, N.-H. 1994. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston, V. 1997. The molecular biology of leaf senescence, J. Exp. Bot. 48: 181–199.

    Article  Google Scholar 

  • Buchanan-Wollaston V., and Ainsworth, C. 1997. Leaf senescence in Brassica napus:cloning of senescence related genes by subtractive hybridisation. Plant Mol. Biol. 33: 821–834.

    Article  PubMed  CAS  Google Scholar 

  • Cabrera y Poch, H.L., Peto, C.A., and Chory, J. 1993. A mutation in the Arabidopsis DET3gene uncouples photoregulated leaf development from gene expression and chloroplast biogenesis. Plant J. 4: 671–682.

    Article  Google Scholar 

  • Callos, J.D., DiRado M., Xu, B., Behringer, F.J., Link, B.M., and Medford, J.I. 1994. The forever younggene encodes an oxidoreductase required for proper development of the Arabidopsisvegetative shoot apex. Plant J. 6: 835–847.

    Article  PubMed  CAS  Google Scholar 

  • Cerioli S., Marocco A., Maddaloni M., Motto M., and Salamini, F 1994. Early event in maize leaf epidermis formation as revealed by cell lineage studies. Development 120: 2113–2120.

    Google Scholar 

  • Chen, J.-J., Janssen, B.-J., Williams A., and Sinha, N. 1997. A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9: 1289–1304.

    PubMed  CAS  Google Scholar 

  • Chin J., Wan Y., Smith J., and Croxdale, J. 1995. Linear aggregations of stomata and epidermal cells in Tradescantialeaves: evidence for their group patterning as a function of the cell cycle. Dev. Biol. 168: 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Chory J., and Peto, C.A. 1990. Mutations in the DET1gene affect cell-type-specific expression of light-regulated genes and chloroplast development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A 87: 8776–8780.

    Article  PubMed  CAS  Google Scholar 

  • Chory J., Peto, C.A., Ashbaugh M., Saganich R., Pratt L., and Ausubel, F. 1989a. Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thalianamutants. Plant Cell 1: 867–880.

    PubMed  CAS  Google Scholar 

  • Chory J., Peto C., Feinbaum R., Pratt, L. and Ausubel, F. 1989b. Arabidopsis thalianamutant that develops as a light-grown plant in the absence of light. Cell 58: 991–999.

    Article  PubMed  CAS  Google Scholar 

  • Chory J., Reinecke D., Sim S., Washburn T., and Brenner, M. 1994. A role for cytokinins in de-etiolation in Arabidopsis. detmutants have an altered response to cytokinins. Plant Physiol. 104: 339–347.

    PubMed  CAS  Google Scholar 

  • Chuck G., Lincoln C., and Hake, S. 1996. KNAT1induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8: 1277–1289.

    PubMed  CAS  Google Scholar 

  • Croxdale J., Smith J., Yandell B., and Johnson, J.B. 1992. Stomatal patterning in Tradescantia:an evaluation of the cell lineage theory. Dev. Biol. 149: 158–167.

    Article  PubMed  CAS  Google Scholar 

  • Deng, X.-W., Caspar T., and Quail, P.H. 1991. cop1:a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 5: 1172–1182.

    Article  PubMed  CAS  Google Scholar 

  • Deschamp, P.A., and Cooke, T.J. 1983. Leaf dimorphism in aquatic angiosperms: significance of turgor pressure and cell expansion. Science 219: 505–507.

    Article  PubMed  CAS  Google Scholar 

  • Deschamp, P.A., and Cooke, T.J. 1985. Leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. Am. J. Bot. 72: 1377–1387.

    Article  Google Scholar 

  • Dolan L., and Poethig, R.S. 1991. Genetic analysis of leaf development in cotton. Development Suppl. 1: 39–46.

    Google Scholar 

  • Dudley M., and Poethig, R.S. 1991. The effect of a heterochronic mutation, teopod2, on the cell lineage of the maize shoot. Development 111: 733–739.

    PubMed  CAS  Google Scholar 

  • Esch, J.J., Oppenheimer, D.G., and Marks, M.D. 1994. Characterization of a weak allele of the GL2 gene of Arabidopsis thaliana. Plant Mol. Biol. 24: 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M.M.S., Passas, H.J., and Poethig, R.S. 1994. Heterochronic effects of glossy15mutations on epidermal cell identity in maize. Development 120: 1971–1981.

    PubMed  CAS  Google Scholar 

  • Feldman, L.J., and Cutter, E.G. 1970a. Regulation of leaf form in Centaurea solstitialisL.I. Leaf development on whole plants in sterile culture. Bot. Gaz. 131: 31–39.

    Article  Google Scholar 

  • Feldman, L.J., and Cutter, E.G. 1970b. Regulation of leaf form in Centaurea solstitialisL. II. The developmental potentialities of excised leaf primordia in sterile culture. Bot. Gaz. 131: 39–49.

    Article  Google Scholar 

  • Fleming, A.J., McQueen-Mason S., Mandel T., and Kuhlemeier, C. 1997. Induction of leaf primordia by the cell wall protein expansin. Science 276: 1415–1418.

    Article  CAS  Google Scholar 

  • Foard, D.E. 1971. The initial protrusion of a leaf primordium can form without concurrent periclinal cell divisions. Can. J. Bot. 49: 1601–1603.

    Article  Google Scholar 

  • Freeling M., and Hake, S. 1985. Developmental genetics of mutants that specify knotted leaves in maize. Genetics 111: 617–634.

    PubMed  CAS  Google Scholar 

  • Frydman, V.M., and Wareing, RF. 1973. Phase change in Hedera helixL.I. Gibberellin-like substances in the two growth phases. J. Exp. Bot. 24: 1131–1138.

    Article  CAS  Google Scholar 

  • Gan S., and Amasino, R.M. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986–1988.

    Article  PubMed  CAS  Google Scholar 

  • Gan S., and Amasino, R.M. 1996. Cytokinins in plant senescence: from spray and pray to clone and play. Bioessays 18: 557–565.

    Article  CAS  Google Scholar 

  • Goliber, T.E. 1989. Endogenous abscisic acid content correlates with photon fluence rate and induced leaf morphology in Hippuris vulgaris. Plant Physiol. 89: 732–734.

    Article  PubMed  CAS  Google Scholar 

  • Goliber T.E. and Feldman L.J. 1989. Osmotic stress endogeus abscisic acid and the control of leaf morphology in Hippuris vulgarisL. Plant Cell Environ. 12 163–171

    Google Scholar 

  • Green, P.B. 1985. Surface of the shoot apex: a reinforcement-field theory for phyllotaxis. J. Cell Sci. Suppl. 2: 181–201.

    CAS  Google Scholar 

  • Hake S. 1992. Unraveling the kts in plant development. Trends Genet. 8 109–114

    Google Scholar 

  • Hake S., Vollbrecht E., and Freeling, M. 1989. Cloning Knotted, the dominant morphological mutant in maize using Ds2as a transposon tag. EMBO. J. 8: 15–22.

    PubMed  CAS  Google Scholar 

  • Hardham, A.R., Green, P.B., and Lang, J.M. 1980. Reorganization of cortical microtubules and cellulose deposition during leaf formation in Graptopetalum paraguayense. Planta 149: 181–195.

    Article  CAS  Google Scholar 

  • Hareven D. Gutfinger T. Parnis A. Eshed Y. and Lifschitz E. 1996. The making of a compound leaf genetic manipulation of leaf architecture in tomato. Cell 84 735–744

    Google Scholar 

  • Harper L., and Freeling, M. 1996. Interactions of liguleless1and liguleless2function during ligule induction in maize. Genetics 144: 1871–1882.

    PubMed  CAS  Google Scholar 

  • Hensel L., Grbić, V., Baumgarten, D.A., and Bleecker, A.B. 1993. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5: 553–564.

    PubMed  CAS  Google Scholar 

  • Hofer J., Turner L., Hellens R., Ambrose M., Matthews P., Michael A., and Ellis, N. 1997. UNIFOLIATAregulates leaf and flower morphogenesis in pea. Curr. Biol. 7: 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Horton, R.F., and Osborne, D.J. 1967. Senescence, abscission and cellulase activity in Phaseolus vulgaris. Nature214: 1086–10

    Article  CAS  Google Scholar 

  • Hülskamp M., Miséra S., and Jürgens, G. 1994. Genetic dissection of trichome cell development in Arabidopsis. Cell 76: 555–566.

    Article  PubMed  Google Scholar 

  • Irish, V.F., and Sussex, I.M. 1992. A fate map of the Arabidopsisembryonic shoot apical meristem. Development 115: 745–753.

    Google Scholar 

  • Jackson D., Veit B., and Hake, S. 1994. Expression of maize KNOTTED1related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405–413.

    CAS  Google Scholar 

  • Jacobs, W.P. 1979. Plant Hormones and Plant Development. Cambridge: Cambridge University Press.

    Google Scholar 

  • Janssen, B.-J., Lund L., and Sinha, N. 1998. Overexpres-sion of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol. 117: 771–786.

    Article  PubMed  CAS  Google Scholar 

  • Jesuthasan S., and Green, P.B. 1989. On the mechanism of decussate phyllotaxis: biophysical studies on the tunica layer of Vinca major. Am. J. Bot. 76: 1152–1166.

    Article  Google Scholar 

  • Jiang, C.-Z., Rodermel, S.R., and Shibles, R.M. 1993. Photosynthesis, Rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. Plant Physiol. 101: 105–112.

    PubMed  CAS  Google Scholar 

  • Kim, G.-T., Tsukaya H., and Uchimiya, H. 1998. The ROTUNDIFOLIA3gene of Arabidopsis thalianaencodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev. 12: 2381–2391.

    Article  PubMed  CAS  Google Scholar 

  • Langdale, J.A., and Kidner, C.A. 1994. bundle sheath defective, a mutation that disrupts cellular differentiation in maize leaves. Development 120: 673–681.

    Google Scholar 

  • Langdale, J.A., Lane B., Freeling M., and Nelson, T. 1989. Cell lineage analysis of maize bundle sheath and mesophyll cells. Dev. Biol. 133: 128–139.

    Article  PubMed  CAS  Google Scholar 

  • Langdale, J.A., Rothermel, B.A., and Nelson, T. 1988. Cellular pattern of photosynthetic gene expression in developing maize leaves. Genes Dev. 2: 106–115.

    Article  PubMed  CAS  Google Scholar 

  • Langdale, J.A., Zelitch I., Miller E., and Nelson, T. 1988. Cell position and light influence C4 versus C3 patterns of photosynthetic gene expression in maize. EMBO J. 7: 3643–3651.

    PubMed  CAS  Google Scholar 

  • Larkin, J.C., Marks, M.D., Nadeau J., and Sack, F. 1997. Epidermal cell fate and patterning in leaves. Plant Cell 9: 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, J.C., Oppenheimer, D.G., Lloyd, A.M., Paparozzi, E.T., and Marks, M.D. 1994. Roles of the GLABROUS1and TRANSPARENT TESTA GLABRAgenes in Arabidopsistrichome development. Plant Cell 6: 1065–1076.

    PubMed  CAS  Google Scholar 

  • Larkin, J.C., Oppenheimer, D.G., Pollock S., and Marks, M.D. 1993. Arabidopsis GLABROUS1gene requires downstream sequences for function. Plant Cell 5: 1739–1748.

    PubMed  CAS  Google Scholar 

  • Larkin, J.C., Young N., Prigge M., and Marks, M.D. 1996. The control of trichome spacing and number in Arabidopsis. Development 122: 997–1005.

    PubMed  CAS  Google Scholar 

  • Li, H.-M., Culligan K., Dixon, R.A., and Chory, J. 1995. CUE1:a mesophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis. Plant Cell 7: 1599–1610.

    PubMed  CAS  Google Scholar 

  • Lincoln C., Long J., Yamaguchi J., Serikawa K., and Hake, S. 1994. A knotted1-likehomeobox gene in Arabidopsisis expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6: 1859–1876.

    PubMed  CAS  Google Scholar 

  • Liu, B.L. 1984. Abscisic acid induces land form characteristics in Marsilea quadrifoliaL. Am.J. Bot. 71: 638–644.

    Article  CAS  Google Scholar 

  • Lloyd, A.M., Walbot V., and Davis, R.W. 1992. Arabidopsisand Nicotianaanthocyanin production activated by maize regulators Rand C1. Science 258: 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  • Lohman, K.N., Gan S., John, M.C., and Amasino, R.M. 1994. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 92: 322–328.

    Article  CAS  Google Scholar 

  • Lowe B., Mathern J., and Hake, S. 1992. Active Mutatorelements suppress the knotted phenotype and increase recombination at the Kn1-Otandem duplication. Genetics 132: 813–822.

    PubMed  CAS  Google Scholar 

  • Lu B., Villani, P.J., Watson, J.C., DeMason, D.A., and Cooke, T.J. 1996. The control of pinna morphology in wild type and mutant leaves of the garden pea (Pisum sativum L.). Int. J. Plant Sci. 157: 659–673.

    Article  Google Scholar 

  • McConnell, J.R., and Barton, M.K. 1998. Leaf polarity and meristem formation in Arabidopsis. Development 125: 2935–2942.

    PubMed  CAS  Google Scholar 

  • McHale, N.A. 1993. LAM-1and FATgenes control development of the leaf blade in Nicotiana sylvestris. Plant Cell 5: 1029–1038.

    PubMed  Google Scholar 

  • Moose, S.P., and Sisco, P.H. 1996. Glossyl5, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev. 10: 3018–3027.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, M.A., Harper, L.C., Krueger, R.W., Dellaporta, S.L., and Freeling, M. 1997. liguleless1encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev. 11: 616–628.

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus G., Bowler C., Kern R., and Chua, N.-H. 1993. Calcium/calmodulin-dependent and-independent phytochrome signal transduction pathways. Cell 73: 937–952.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer, D.G., Herman, P.L., Sivakumaran S., Esch J., and Marks, M.D. 1991. A mybgene required for leaf trichome differentiation in Arabidopsisis expressed in stipules. Cell 67: 483–493.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, D.J. 1989. Abscission. Crit. Rev. Plant Sci. 8: 103–129.

    Article  CAS  Google Scholar 

  • Parnis A., Cohen O., Gutfinger T., Hareven D., Zamir D., and Lifschitz, E. 1997. The dominant developmental mutants of tomato, mouse-earand curl, are associated with distinct modes of abnormal transcriptional regulation of a knottedgene. Plant Cell 9: 2143–2158.

    PubMed  CAS  Google Scholar 

  • Poethig, R.S. 1988a. Heterochronic mutations affecting shoot development in maize. Genetics 119: 959–97

    PubMed  CAS  Google Scholar 

  • Poethig, S. 1988b. A non-cell-autonomous mutation regulating juvenility in maize. Nature 336: 82–83.

    Article  Google Scholar 

  • Poethig, R.S. 1990. Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923–930.

    Article  PubMed  CAS  Google Scholar 

  • Poethig, R.S., and Sussex, I.M. 1985a. The developmental morphology and growth dynamics of the tobacco leaf. Planta 165: 158–169.

    Article  Google Scholar 

  • Poethig, R.S., and Sussex, I.M. 1985b. The cellular parameters of leaf development in tobacco: a clonal analysis. Planta 165: 170–1

    Article  Google Scholar 

  • Poethig, R.S., and Szymkowiak, E.J. 1995. Clonal analysis of leaf development in maize. Maydica 40: 67–76.

    Google Scholar 

  • Poovaiah, B.W. 1974. Formation of callose and lignin during leaf abscission. Am. J. Bot. 61: 829–834.

    Article  Google Scholar 

  • Reinhardt D., Wittwer, E, Mandel, T., and Kuhlemeier, C. 1998. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10: 1427–1437.

    PubMed  CAS  Google Scholar 

  • Rerie, W.G., Feldmann, K.A., and Marks, M.D. 1994. The GLABRA2gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev. 8: 1388–1399.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, W.J. 1957. Gibberellic acid and the reversal of adult Hederato a juvenile state. Am. J. Bot. 44: 743–746.

    Article  Google Scholar 

  • Robbins, W.J. 1960. Further observations on juvenile and adult Hedera. Am. J. Bot. 47: 485–491.

    Article  CAS  Google Scholar 

  • Roth R., Hall, L.N., Brutnell, T.P., and Langdale, J.A. 1996. Bundle sheath defective2, a mutation that disrupts the coordinated development of bundle sheath and mesophyll cells in the maize leaf. Plant Cell 8: 915–927.

    PubMed  CAS  Google Scholar 

  • Sachs, T. 1969. Regeneration experiments on the determination of the form of leaves. Israel J. Bot. 18: 21–30.

    Google Scholar 

  • Scanlon, M.J., and Freeling, M. 1997. Clonal sectors reveal that a specific meristematic domain is not utilized in the maize mutant narrow sheath. Dev. Biol. 182: 52–66.

    Article  PubMed  CAS  Google Scholar 

  • Scanlon, M.J., Schneeberger, R.G., and Freeling, M. 1996. The maize mutant narrow sheathfails to establish leaf margin identity in a meristematic domain. Development 122: 1683–1691.

    PubMed  CAS  Google Scholar 

  • Schneeberger R., Tsiantis M., Freeling M., and Langdale, J.A. 1998. The rough sheath2gene negatively regulates homeobox gene expression during maize leaf development. Development 125: 2857–2865.

    PubMed  CAS  Google Scholar 

  • Schneeberger R.G. Becraft P.W. Hake S. and Freeling M. 1995. Ectopic expression of the knoxhomeo box gene rough sheathlalters cell fate in the maize leaf. Genes Dev. 9: 2292–2304

    Google Scholar 

  • Schnittger A., Grini, P.E., Folkers U., and Hülskamp, M. 1996. Epidermal fate map of the Arabidopsisshoot meristem. Dev. Biol. 175: 248–255.

    Article  PubMed  CAS  Google Scholar 

  • Schnittger A., Jürgens G., and Hülskamp, M. 1998. Tissue layer and organ specificity in trichome formation are regulated by GLABRA1and TRIPTYCHONin Arabidopsis. Development 125: 2283–2289.

    PubMed  CAS  Google Scholar 

  • Selker, J.M.L., Steucek, G.L., and Green, P.B. 1992. Biophysical mechanisms for morphogenetic progressions at the shoot apex. Dev. Biol. 153: 29–43.

    Article  PubMed  CAS  Google Scholar 

  • Sinha N., and Hake, S. 1990. Mutant characters of Knottedmaize leaves are determined in the innermost tissue layers. Dev. Biol. 141: 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Sinha N., and Hake, S. 1994. The Knottedleaf blade is a mosaic of blade, sheath, and auricle identities. Dev. Genet. 15: 401–414.

    Article  Google Scholar 

  • Sinha N., Williams, R.E., and Hake, S. 1993. Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev. 7: 787–795.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L.G., Greene B., Veit B., and Hake, S. 1992. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116: 21–30.

    PubMed  CAS  Google Scholar 

  • Smith, L.G., Hake S., and Sylvester, A.W. 1996. The tangled-1mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122: 481–489.

    PubMed  CAS  Google Scholar 

  • Steeves, T.A. 1961. A study of the developmental potentialities of excised leaf primordia in sterile culture. Phytomorphology 11: 346–359.

    Google Scholar 

  • Steeves, T.A., and Sussex, I.M. 1957. Studies on the development of excised leaves in sterile culture. Am. J. Bot. 44: 665–673.

    Article  Google Scholar 

  • Steeves, T.A., and Sussex, I.M. 1989. Patterns in Plant Development, 2nd Ed. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sylvester, A.W., Cande, W.Z., and Freeling, M. 1990. Division and differentiation during normal and liguleless-1maize leaf development. Development 110: 985–1000.

    PubMed  CAS  Google Scholar 

  • Sylvester, A.W., Smith L., and Freeling, M. 1996. Acquisition of identity in the developing leaf. Annu. Rev. Cell Dev. Biol. 12: 257–304.

    Article  PubMed  CAS  Google Scholar 

  • Timmermans, M.C.P., Schultes, N.P., Jankovsky, J.P., and Nelson, T. 1998. Leafbladeless1is required for dorsoventrality of lateral organs in maize. Development 125: 2813–2823.

    PubMed  CAS  Google Scholar 

  • Tsuge T., Tsukaya H., and Uchimiya, H. 1996. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana(L.) Heynh. Development 122: 1589–1600.

    PubMed  CAS  Google Scholar 

  • Tucker, M.L., Baird, S.L., and Sexton, R. 1991. Bean leaf abscission: tissue-specific accumulation of a cellulase mRNA. Planta 186: 52–57.

    Article  CAS  Google Scholar 

  • Veit B., Briggs, S.P., Schmidt, R.J., Yanofsky, M.F., and Hake, S. 1998. Regulation of leaf initiation by the terminal earlgene of maize. Nature 393: 166–168.

    Article  PubMed  CAS  Google Scholar 

  • Veit B., Vollbrecht E., Mathern J., and Hake, S. 1990. A tandem duplication causes the Knl-Oallele of Knotted, a dominant morphological mutant of maize. Genetics 125: 623–631.

    PubMed  CAS  Google Scholar 

  • Waites R., and Hudson, A. 1995. phantastica:a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121: 2143–2154.

    CAS  Google Scholar 

  • Waites R., Selvadurai, H.R.N., Oliver, I.R., and Hudson, A. 1998. The PHANTASTICAgene encodes a MYB transcription factor involved in growth and dorsiventrality of lateral organs in Antirrhinum. Cell 93: 779–789.

    Article  PubMed  CAS  Google Scholar 

  • Yang M., and Sack, ED. 1995. The too many mouthsand four lipsmutations affect stomatal production in Arabidopsis. Plant Cell 7: 2227–2239.

    PubMed  CAS  Google Scholar 

  • Young, J.P.W. 1983. Pea leaf morphogenesis: a simple model. Ann. Bot. 52: 311–316.

    Google Scholar 

  • Zeiger E., and Stebbins, G.L. 1972. Developmental genetics in barley: a mutant for stomatal development. Am. J. Bot. 59: 143–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raghavan, V. (2000). Leaf Growth and Differentiation. In: Developmental Biology of Flowering Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1234-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1234-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7054-6

  • Online ISBN: 978-1-4612-1234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics