Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 13))

Abstract

Without the ability to localize a sound, a bird’s auditory world would be a cacophony of environmental sounds and vocalizations. When we can identify the location of a sound source, we can form auditory objects that help us to discern separate items in our environment (Bregman 1990). Given the parallels in the processing of auditory information in birds and mammals (e.g., humans), it can be assumed that this benefit of auditory localization will also accrue to birds. When a bird listens to the contact calls of members of its flock at a distance, for example, its directional hearing will help it to keep in touch with them. Through the mechanisms of sound localization it may be able to form auditory objects and thus could more easily separate its flock mates’ calls from the acoustic background produced by other sources. A simple variation in the auditory sensitivity with direction may help the bird to increase the signal-to-noise ratio through a mechanism called “spatial release from masking” (Dent et al. 1997). When orienting its head in a way that it is more sensitive to the contact calls coming from one direction and less sensitive to the background noise arriving from other directions, a bird can considerably improve its signal detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adolphs R (1993) Bilateral inhibition generates neuronal responses tuned to inter-aural level differences in the auditory brainstem of the barn owl. J Neurosci 13:3647–3668.

    PubMed  CAS  Google Scholar 

  • Albeck Y (1997) Inhibition sensitive to interaural time difference in the barn owl’s inferior colliculus. Hear Res 109:102–108.

    Article  PubMed  CAS  Google Scholar 

  • Albeck Y, Konishi M (1995) Responses of neurons in the auditory pathway of the barn owl to partially correlated binaural signals. J Neurophysiol 74:16891700.

    Google Scholar 

  • Amagai S, Carr CE, Dooling RJ (1995) Physiology and anatomy of brainstem auditory nuclei of several small birds. In: Burrows M, Matheson T, Newland PL, Schuppe H (eds) Nervous Systems and Behaviour. Thieme: Stuttgart, p. 314.

    Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanisms of directionally selective units in rabbit’s retina. J Physiol (Lond) 178:477–504.

    CAS  Google Scholar 

  • Batra R, Kuwada S, Stanford TR (1989) Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. J Neurophysiol 61:257–268.

    PubMed  CAS  Google Scholar 

  • Beitel RE (1991) Localization of azimuthal sound direction by the great horned owl. J Acoust Soc Am 90:2843–2846.

    Article  PubMed  CAS  Google Scholar 

  • Blauert J (1983) Spatial Hearing. Cambridge MA: MIT Press, 427 pp.

    Google Scholar 

  • Brainard MS, Knudsen EI, Esterly SD (1992) Neural derivation of sound localiza-tion: resolution of spatial ambiguities in binaural cues. J Acoust Soc Am 91:1015–1017.

    Article  PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brown CH (1982) Ventroloquial and locatable vocalizations in birds. Z Tierpsychol 59:338–350.

    Article  Google Scholar 

  • Brown CH (1994) Sound localization. In: Fay RR, Popper AN (eds) Comparative Hearing: Mammals. New York: Springer, pp. 57–96.

    Chapter  Google Scholar 

  • Brückner S, Hyson RL (1998) Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick. Eur J Neurosci 10: 3438–3450.

    Article  PubMed  Google Scholar 

  • Calford MB (1988) Constraints an the coding of sound frequency imposed by the avian interaural canal. J Comp Physiol A 162:491–502.

    Article  Google Scholar 

  • Calford MB, Piddington RW (1988) Avian interaural delay enhances interaural delay. J Comp Physiol A 162:503–510.

    Article  Google Scholar 

  • Calford MB, Wise LZ, Pettigrew JD (1985) Coding of sound localition and frequency in the auditory midbrain of diurnal birds of prey, families Accipitridae and Falconidae. J Comp Physiol A 157:149–160.

    Article  Google Scholar 

  • Carr CE (1992) Evolution of the central auditory system in reptiles and birds. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer, pp. 511–543.

    Chapter  Google Scholar 

  • Carr CE (1993) Processing of temporal information in the brain. Ann Rev Neurosci 16:223–243.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Boudreau RE (1991) Central projections of auditory nerve fibers in the barn owl. J Comp Neurol 314:306–318.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Boudreau RE (1993) Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: encoding and measuring interaural time differences. J Comp Neurol 334:337–355.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl’s brainstem. Proc Natl Acad Sci U S A 85:8311–8315.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246.

    PubMed  CAS  Google Scholar 

  • Carr CE, Fujita I, Konishi M (1989) Distribution of GABAergic neurons and ter-minals in the auditory system of the barn owl. J Comp Neurol 286:190–207.

    Article  PubMed  CAS  Google Scholar 

  • Cohen YE, Knudsen EI (1994) Auditory tuning for spatial cues in the barn owl basal ganglia. J Neurophysiol 72:285–298.

    PubMed  CAS  Google Scholar 

  • Cohen YE, Knudsen EI (1995) Binaural tuning of auditory units in the forebrain archistratal gaze fields of the barn owl: local organization but no space map. J Neurosci 15:5152–5168.

    PubMed  CAS  Google Scholar 

  • Cohen YE, Knudsen EI (1998) The representation of binaural spatial cues in the primary auditory field of the barn owl forebrain. J Neurophysiol 79:879–890.

    PubMed  CAS  Google Scholar 

  • Cohen YE, Miller GL, Knudsen EI (1998) A forebrain pathway for auditory space processing in the barn owl. J Neurophysiol 79:891–902.

    PubMed  CAS  Google Scholar 

  • Coles RB, Aitkin LM (1979) The response properties in the midbrain of the domestic fowl (Gallus gallus) to monaural and binaural stimuli. J Comp Physiol 134:241–251.

    Article  Google Scholar 

  • Coles RB, Guppy (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol A 163:117–133.

    Article  PubMed  CAS  Google Scholar 

  • Coles RB, Lewis DB, Hill KG, Hutchings ME, Gower DM (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). II. Cochlear physiology. J Exp Biol 86:153–170.

    Google Scholar 

  • Counter SA, Borg E (1982) The avian stapedius muscle. Acta Otolaryngol 94:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Dent ML, Larsen ON, Dooling RJ (1997) Free-field binaural unmasking in budgerigars (Melopsittacus undulatus). Behav Neurosci 111:590–598.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Frost BJ, Baldwin PJ, Csizy ML (1989) Auditory localization in the northern saw-whet owl, Aegolius acadicus. Can J Zool 67:1955–1959.

    Article  Google Scholar 

  • Fujita I, Konishi M (1991) The role of GABAergic inhibition in processing of interaural time difference in the owl’s auditory system. J Neurosci 11:722739.

    Google Scholar 

  • Gatehouse RW, Shelton BR (1978) Sound localization in the bobwhite quail (Colinus virginianus). Behav Biol 22:533–540.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Narins PM (1988) The phase response of primary auditory afferents in a songbird (Sturnus vulgaris L.). Hearing Res 32:81–92.

    Article  CAS  Google Scholar 

  • Granit O (1941) Beiträge zur Kenntnis des Gehörsinns der Vögel. Omis fennica 18:49–71.

    Google Scholar 

  • Griffin DR (1953) Acoustic orientation in the oil bird, Steatornis. Proc Natl Acad Sci 39:884–893.

    Article  PubMed  CAS  Google Scholar 

  • Hill KG, Lewis DB, Hutchings ME, Coles RB (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). I. Acoustic properties of the auditory system. J Exp Biol 86:135–151.

    Google Scholar 

  • Hyson RL, Overholt EM, Lippe WR (1994) Cochlear microphonic measurements of interaural time differences in the chick. Hear Res 81:109–118.

    Article  PubMed  CAS  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins WM, Masterton RB (1979) Sound localization in the pigeon (Columba livia). J Comp Physiol Psychol 93:403–413.

    Article  Google Scholar 

  • Kautz D, Wagner H (1998) GABAergic inhibition influences auditory motion-direction sensitivity in barn owls. J Neurophysiol 80:172–185.

    PubMed  CAS  Google Scholar 

  • Keller CH, Takahashi TT (1996a) Responses to simulated echoes by neurons in the barn owl’s auditory space map. J Comp Physiol A 178:499–512.

    Article  CAS  Google Scholar 

  • Keller CH, Takahashi TT (1996b) Binaural cross-correlation predicts the responses of neurons in the owl’a auditory space map under conditions simulating summing localization. J Neurosci 16:4300–4309.

    CAS  Google Scholar 

  • Klump GM, Larsen ON (1992) Azimuth sound localization in the European star-ling (Sturnus vulgaris): physical binaural cues. J Comp Physiol A 170:243–251.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM, Shalter MD (1984) Acoustic behaviour of birds and mammals in the predator context. Z Tierpsychol 66:189–226.

    Article  Google Scholar 

  • Klump GM, Windt W, Curio E (1986) The great tit’s (Parus major) auditory resolution in azimuth. J Comp Physiol 158:383–390.

    Article  Google Scholar 

  • Knudsen EI (1980) Sound localization in birds. In: Popper AN, Fay RR (eds) Com-parative Studies of Hearing in Vertebrates. New York: Spinger, pp. 289–322.

    Chapter  Google Scholar 

  • Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the barn owl. J Neurosci 2:1177–1194.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1983a) Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222:939–942.

    Article  CAS  Google Scholar 

  • Knudsen EI (1983b) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). J Comp Neurol 218:174–186.

    Article  CAS  Google Scholar 

  • Knudsen EI (1984a) Auditory properties of space-tuned units in the owl’s tectum. J Neurophysiol 53:709–723.

    Google Scholar 

  • Knudsen EI (1984b) Synthesis of a neural map of auditory space in the owl. In: Edelman GM, Cowan WM, Gall WE (eds) Dynamic Aspects of Neocortical Functioning. New York: Wiley, pp. 375–396.

    Google Scholar 

  • Knudsen EI (1988) Experience shapes sound localization and auditory unit properties during development in the barn owl. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 137–149.

    Google Scholar 

  • Knudsen EI (1994) Supervised learning in the brain. J Neurosci 14:3985–3997.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Brainard MS (1995) Creating a unified representation of visual and auditory space in the brain. Annu Rev Neurosci 18:19–43.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1996a) Contribution of the forebrain archistratal gaze fields to auditory orienting behavior in the barn owl. Exp Brain Res 108:23–32.

    Article  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1996b) Disruption of auditory spatial working memory by inactivation of the forebrain archistriatum in barn owls. Nature 383:428–431.

    Article  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978a) A neural map of auditory space in the owl. Science 200:795–797.

    Article  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978b) Center-surround organization of auditory receptive fields in the owl. Science 202:778–780.

    Article  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978c) Space and frequency are represented separately in the auditory midbrain of the owl. J Neurophysiol 41:870–884.

    CAS  Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol 133:13–21.

    Article  Google Scholar 

  • Knudsen EI, Konishi M, Pettigrew JD (1977) Receptive fields of auditory neurons in the owl. Science 198:1278–1280.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization by the barn owl (Tyto alba) measured with the search coil technique. J Comp Physiol 133:1–11.

    Article  Google Scholar 

  • Knudsen EI, Knudsen PF, Masino T (1993) Parallel pathways mediating both sound localization and gaze control in the forebrain and midbrain of the barn owl. J Neurosci 13:2837–2852.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Esterly SD, Olsen JF (1994) Adaptive plasticity of the auditory space map in the optic tectum of adult and baby barn owls in response to external ear modification. J Neurophysiol 71:79–94.

    PubMed  CAS  Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Two alba. J Neurosci 17:3312–3321.

    PubMed  Google Scholar 

  • Konishi M (1973a) Locatable and non-locatable acoustic signals for barn owls. Am Nat 107:775–785.

    Article  Google Scholar 

  • Konishi M (1973b) How the owl tracks its prey. Am Sci 61:414–424.

    Google Scholar 

  • Konishi M (1983) Neuroethology of acoustic prey localization in the barn owl. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer, pp. 303–317.

    Chapter  Google Scholar 

  • Konishi M (1993a) Listening with two ears. Sci Am 286:66–73.

    Article  Google Scholar 

  • Konishi M (1993b) Neuroethology of sound localization in the owl. J Comp Physiol A 173:3–7.

    Article  Google Scholar 

  • Konishi M, Knudsen EI (1979) The oilbird: hearing and echolocation. Science 204:425–427.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Sullivan WE, Takahashi TT (1985) The owl’s cochlear nuclei process different sound localization cues. J Acoust Soc Am 78:360–364.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Takahashi TT, Wagner H, Sullivan WE, Carr CE (1988) Neurophysiological and anatomical substrates of sound localization in the owl. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 721–745.

    Google Scholar 

  • Koyano K, Funabiki K, Ohmori H (1996) Voltage-gated currects and their roles in timing coding in auditory neurons of the nucleus magnocellularis of the chick. Neurosci Res 26:29–45.

    PubMed  CAS  Google Scholar 

  • Kretzschmar E (1982) Wie hört ein Sperber (Accipiter nisus L.) Alarmrufe seiner Beutevögel? Thesis, Ruhr-University Bochum.

    Google Scholar 

  • Kuhn GF (1977) Model for interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167.

    Article  Google Scholar 

  • Kühne R, Lewis B (1985) External and middle ears. In: King AS, McLelland J (eds) Form and Function in Birds, Vol. 3. London: Academic Press, pp. 227–271.

    Google Scholar 

  • Larsen ON, Dooling RJ (1992) Binaural physical cues available for sound localization in the free sound field by small birds. Proceedings 3rd International Congress Neuroethology, Montreal 1992, p. 338.

    Google Scholar 

  • Larsen ON, Dooling RJ (1996) Intracranial pressure modifies hearing in birds. Abstracts 19th Midwinter Meeting Association for Research in Otolanryngology, Feb. 4–8, 1996 St. Petersburg Beach.

    Google Scholar 

  • Larsen ON, Tweedale R, Calford MB (1989) Binaural cues for directional hearing in acoustically non-specialized birds. Soc Neurosci Abs 15:114.

    Google Scholar 

  • Larsen ON, Dooling RJ, Ryals BM (1997) Roles of intracranial air pressure in bird audition. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR (eds) Diversity in Auditory Mechanics. Singapore: World Scientific Publishing, pp. 253–259.

    Google Scholar 

  • Lewald J (1987a) The acuity of sound localization in the pigeon (Columba livia). Naturwiss 74:296–297.

    Article  CAS  Google Scholar 

  • Lewald J (1987b) Interaural time and intensity difference thresholds of the pigeon (Columba livia). Naturwiss 74:449–451.

    Article  CAS  Google Scholar 

  • Lewald J (1988) Neuronal coding of azimuthal sound direction in the auditory mid-brain of the pigeon. Naturwiss 75:470–472.

    Article  PubMed  CAS  Google Scholar 

  • Lewald J (1990a) The directionality of the ear of the pigeon (Columba livia). J Comp Physiol A 167:533–543.

    Article  Google Scholar 

  • Lewald J (1990b) Neural mechanism of directional hearing in the pigeon. Exp Brain Res 82:423–436.

    Article  CAS  Google Scholar 

  • Lewis B (1983) Directional cues for auditory localization. In: Lewis B (ed) Bioa-coustics: A Comparative Approach. London: Academic Press, pp. 233–257.

    Google Scholar 

  • Lewis B, Coles R (1980) Sound localization in birds. TINS 3:102–105.

    Google Scholar 

  • Manley GA, Köppl C, Konishi M (1988) A neural map of interaural intensity dif-ference in the brainstem of the barn owl. J Neurosci 8:2665–2677.

    PubMed  CAS  Google Scholar 

  • Marier P (1955) Characteristics of some animal calls. Nature 176:6–8.

    Article  Google Scholar 

  • Mazer JA (1998) How the owl resolves auditory coding ambiguity. Proc Natl Acad Sci U S A 95:10932–10937.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–159.

    Article  PubMed  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246.

    Article  Google Scholar 

  • Moiseff A (1989a) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol A 164:629–636.

    Article  CAS  Google Scholar 

  • Moiseff A (1989b) Bi-coordinate sound localization by the barn owl. J Comp Physiol A 164:637–644.

    Article  CAS  Google Scholar 

  • Moiseff A, Haresign T (1992) Responses of auditory units in the barn owl’s inferior colliculus to continuously varying interaural phase differences. J Neurophysiol 67:1428–1436.

    PubMed  CAS  Google Scholar 

  • Moiseff A, Konishi M (1981a) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48.

    CAS  Google Scholar 

  • Moiseff A, Konishi M (1981b) The owl’s interaural pathway is not involved in sound localization. J Comp Physiol A 144:299–304.

    Article  Google Scholar 

  • Moiseff A, Konishi M (1983) Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. J Neurosci 3:2553–2562.

    PubMed  CAS  Google Scholar 

  • Mori K (1997) Across-frequency nonlinear inhibition by GABA in processing of interaural time difference. Hear Res 111:22–30.

    Article  PubMed  CAS  Google Scholar 

  • Nelson BS, Stoddard PK (1998) Accuracy of auditory perception of distance and azimuth by a passerine bird. Anim Behav 56:467–477.

    Article  PubMed  Google Scholar 

  • Norberg RA (1977) Occurrence and independent evolution of bilateral ear asymmetry in owls and implications on owl taxonomy. Phil Trans R Soc London B Biol Sci 282:375–408.

    Article  Google Scholar 

  • Novick A (1959) Acoustic orientation in the cave swiftlet. Biol Bull 117:497–503.

    Article  Google Scholar 

  • Olsen JF, Knudsen EI, Esterly SD (1989) Neural maps of interaural time and inten-sity differences in the optic tectum of the barn owl. J Neurosci 9:2591–2605.

    PubMed  CAS  Google Scholar 

  • Olson HF (1946) Gradient microphones. J Acoust Soc Am 17:192–198.

    Article  Google Scholar 

  • Overholt EM, Rubel EW, Hyson RL (1993) A circuit for coding interaural time dif-ferences in the chick brain stem. J Neurosci 12:1698–1708.

    Google Scholar 

  • Park TJ (1989) Sound localization in small birds. Dissertation, University of Maryland. MD, College Park.

    Google Scholar 

  • Park TJ, Dooling RJ (1991) Sound localization in small birds: absolute localization in azimuth. J Comp Psychol 105:125–133.

    Article  PubMed  CAS  Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573.

    PubMed  CAS  Google Scholar 

  • Pena JL, Viete S, Albeck Y, Konishi M (1996) Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. J Neurosci 16:7046–7054.

    PubMed  CAS  Google Scholar 

  • Pettigrew JD, Larsen ON (1990) Directional hearing in the plains wanderer Pedionomus torquatus. In: Rowe M, Aitkin L (eds) Information Processing in Mammalian Auditory and Tactile Systems. New York: Alan R. Liss, pp. 179–190.

    Google Scholar 

  • Proctor L. Konishi M (1997) Representation of sound localization cues in the auditory thalamus of the barn owl. Proc Natl Acad Sci U S A 94:10421–10425.

    Article  PubMed  Google Scholar 

  • Quine DB, Kreithen ML (1981) Frequency shift discrimination: can homing pigeons locate infrasounds by doppler shifts? J Comp Physiol 141:153–155.

    Article  Google Scholar 

  • Rangol H-P, Plassmann W (1993) The middle-ear of the zebrafinch behaves like a pressure-gradient receiver. In: Elsner N, Heisenberg M (eds) Gene—BrainBehaviour. Stuttgart: Thieme, p. 250.

    Google Scholar 

  • Rayleigh Lord, Strutt JW (1907) On our perception of sound direction. Philos Mag 13:214–232.

    Article  Google Scholar 

  • Reyes AD, Rubel EW, Spain WJ (1996) In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons. J Neurosci 16:993–1007.

    PubMed  CAS  Google Scholar 

  • Rice WR (1982) Acoustical location of prey by the marsh hawk: adaptation to concealed prey. Auk 99:403–413.

    Google Scholar 

  • Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Electron Eng 10:137–145.

    CAS  Google Scholar 

  • Rosowski JJ (1979) The interaural pathway of the pigeon and sound localization: does the pigeon ear act as a differential pressure transducer? Dissertation, University of Pennsylvania, Philalelphia, PA.

    Google Scholar 

  • Rosowski JJ, Saunders JC (1980) Sound transmission through the avian interaural pathways. J Comp Physiol A 136:183–190.

    Article  Google Scholar 

  • Rubel EW, Parks TN (1975) Organization of development of brain stem auditory nuclei of the chicken: tonotopic organization of n. magnocellularis and n. laminaris. J Comp Neurol 164:411–434.

    Article  PubMed  CAS  Google Scholar 

  • Rucci M, Tononi G, Edelman GM (1997) Registration of neural maps through value-dependent learning: modeling the alignment of auditory and visual maps in the barn owl’s optic tectum. J Neurosci 17:334–352.

    PubMed  CAS  Google Scholar 

  • Saberi K, Farahbod H, Konishi M (1998) How do owls localize interaurally phase-ambiguous signals? Proc Natl Acad Sci U S A 95:6465–6468.

    Article  PubMed  CAS  Google Scholar 

  • Schmid O, Rangol H-P, Plassmann W (1996) Directional hearing in zebra finches—analysis on the level of CM-potential recordings. In: Elsner N, Schnitzler H-U (eds) Brain and Evolution. Stuttgart: Thieme, p. 188.

    Google Scholar 

  • Schwartzkopff J (1950) Beitrag zum Problem des Richtungshörens bei Vögeln. Z vergl Physiol 32:319–327.

    Article  Google Scholar 

  • Schwartzkopff J (1952) Untersuchungen über die Arbeitsweise des Mittelohres and das Richtungshören der Singvögel unter Verwendung von Cochlea-Potentialen. Z Vergl Physiol 34:46–68.

    Article  Google Scholar 

  • Schwartzkopff J (1962a) Zur Frage des Richtungshörens von Eulen (Striges). Z Vergl Physiol 45:570–580.

    Article  Google Scholar 

  • Schwartzkopff J (1962b) Die akustische Lokalisation bei Tieren. Ergebn Biol 24: 136–176.

    Article  Google Scholar 

  • Schwarz L (1943) Zur Theorie der Beugung einer ebenen Schallwelle an der Kugel. Akust Z 8:91–117.

    Google Scholar 

  • Shalter MD (1978) Localization of passerine seeet and mobbing calls by goshawks and pygmy owls. Z Tierpsychol 46:260–267.

    Google Scholar 

  • Shalter MD, Schleidt WM (1977) The ability of barn owls Tyto alba to discriminate and locaize avian alarm calls. Ibis 119:22–27.

    Article  Google Scholar 

  • Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psychol 48:297–306.

    Article  Google Scholar 

  • Stewart GW (1911) The acoustic shadow of a rigid sphere with certain applications in architectural acoustics and audition. Phys Rev 33:467–479.

    Google Scholar 

  • Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799.

    PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sci U S A 83:8400–8404.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi TT (1989) The neural coding of auditory space. J Exp Biol 146:307–322.

    PubMed  CAS  Google Scholar 

  • Takahashi TT, Keller CH (1992a) Simulated motion enhances neuronal selectivity for a sound localization cue in background noise. J Neurosci 12:4381–4390.

    CAS  Google Scholar 

  • Takahashi TT, Keller CH (1992b) Commissural connections mediate inhibition for the computation of interaural level difference in the barn owl. J Comp Physiol A 170:161–169.

    Article  CAS  Google Scholar 

  • Takahashi TT, Keller CH (1994) Representation of multiple sound sources in the owl’s auditory space map. J Neurosci 14:4780–4793.

    PubMed  CAS  Google Scholar 

  • Takahashi TT, Konishi M (1986) Selectivity for interaural time difference in the owl’s midbrain. J Neurosci 6:3413–3422.

    PubMed  CAS  Google Scholar 

  • Takahashi TT, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786.

    PubMed  CAS  Google Scholar 

  • Takahashi TT, Wagner H, Konishi M (1989) Role of commissural projections in the representation of bilateral auditory space in the barn owl’s inferior colliculus. J Comp Neurol 281:545–554.

    Article  PubMed  CAS  Google Scholar 

  • Trainer JE (1946) The auditory acuity of certain birds. Doctoral dissertation, Cornell University, Ithaca, NY.

    Google Scholar 

  • Viete S, Pena JL, Konishi M (1997) Effects of interaural intensity difference on the processing of interaural time difference in the owl’s nucleus laminaris. J Neurosci 17:1815–1824.

    PubMed  CAS  Google Scholar 

  • Volman SF (1994) Directional hearing in owls: neurobiology, behavior and evolution. In: Davies MNO, Green PR (eds) Perception and Motor Control in Birds. Berlin: Springer, pp. 292–314.

    Chapter  Google Scholar 

  • Volman SF, Konishi M (1989) Spatial selectivity and binaural responses in the inferior colliculus of the great horned owl. J Neurosci 9:3083–3096.

    PubMed  CAS  Google Scholar 

  • Volman SF, Konishi M (1990) Comparative physiology of sound localization in four species of owls. Brain Behav Evol 36:196–215.

    Article  PubMed  CAS  Google Scholar 

  • Wagner H (1993) Sound-localization deficits induced by lesions in the barn owls’s auditory space map. J Neurosci 13:371–386.

    PubMed  CAS  Google Scholar 

  • Wagner H, Takahashi TT (1990) Neurons in the midbrain of the barn owl are sensitive to the direction of apparent acoustic motion. Naturwiss 77:439–442.

    Article  PubMed  CAS  Google Scholar 

  • Wagner H, Takahashi TT (1992) Influence of temporal cues on acoustic motion-direction sensitivity of auditory neurons in the owl. J Neurophysiol 68:2063–2076.

    PubMed  CAS  Google Scholar 

  • Wagner H, Takahashi TT, Konishi M (1987) Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. J Neurosci 7:3105–3116.

    PubMed  CAS  Google Scholar 

  • Wagner H, Trinath T, Kautz D (1994) Influence of stimulus level on acoustic motion-direction sensitivity in barn owl midbrain neurons. J Neurophysiol 71:1907–1916.

    PubMed  CAS  Google Scholar 

  • Wagner H, Kautz D, Poganiatz I (1997) Principles of acoustic motion detection in animals and man. Trends Neurosci 20:583–588.

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1993) Sound localization. In: Yost WA, Popper AN, Fay RR (eds) Human Psychophysics. New York: Springer, pp. 155–192.

    Google Scholar 

  • Windt W (1985) Lokalisation von Kunst-and Naturlauten durch Kohlmeisen (Parus major). Diplom Thesis, Ruhr-Universität Bochum.

    Google Scholar 

  • Wise LZ, Frost BJ Shaver SW (1988) The representation of sound frequency and space in the midbrain of the saw-whet owl. Soc Neurosci Abstr 14:1095.

    Google Scholar 

  • Woodworth (1962) Experimental Psychology. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Yang L, Monsivais P, Rubel EW (1999) The superior olivary nucleus and its influ-ence on nucleus laminaris: a source of inhibitory feedback for coincidence detec-tion in the avian auditory brainstem. J Neurosci 19:2313–2325.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JCK (1988) Neural mechanisms underlying interaural time sensitivity to tones and noise. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 385–430.

    Google Scholar 

  • Yin TCT, Kuwada S, Sujaku Y (1984) Interaural time sensitivity of high-frequency neurons in the inferior colliculus. J Acoust Soc Am 76:1401–1410.

    Article  PubMed  CAS  Google Scholar 

  • Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 3:1373–1378.

    PubMed  CAS  Google Scholar 

  • Zurek PM (1987) The precedence effect. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer, pp. 85–105.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klump, G.M. (2000). Sound Localization in Birds. In: Dooling, R.J., Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Birds and Reptiles. Springer Handbook of Auditory Research, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1182-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1182-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7036-2

  • Online ISBN: 978-1-4612-1182-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics