Skip to main content

The Hearing Organ of Birds and Crocodilia

  • Chapter
Comparative Hearing: Birds and Reptiles

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 13))

Abstract

Among the vertebrates, birds are one of the most vocal groups. Many birds (especially the passerines, or song birds) rely strongly on their sense of hearing for communication in territorial, social, and sexual behavior and for alarm signals. Their relatives, the Crocodilia (crocodiles, alligators, and gavials) are also vocal—a rare trait in reptiles. They are known to use several kinds of vocalization as communication signals in different behavioral contexts both as adults and as young, even within the egg (e.g., Garrick et al. 1978). In addition, some birds use their hearing for passive sound localization of prey (e.g., owls, Konishi 1973) or for active echolocation in their cave habitats (e.g., oil birds and cave swiftlets, Konishi and Knudsen 1979). Thus the sense of hearing is critically important in the life of many birds and Crocodilia, and selection pressures have produced an excellent sensitivity to sound (in birds as good as in mammals) in the frequency range covered (few birds hear higher frequencies than about 10-12 kHz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashmore JF, Attwell D (1985) Models for electrical tuning in hair cells. Proc Roy Soc B 226:325–344.

    Article  Google Scholar 

  • Authier S, Manley GA (1995) A model of frequency tuning in the basilar papilla of the Tokay gecko, Gekko gecko. Hear Res 82:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology Vol. V/1. Berlin, New York: Springer-Verlag, pp. 159–212.

    Google Scholar 

  • Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid, active hair-bundle movements in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.

    PubMed  CAS  Google Scholar 

  • Brix J, Manley GA (1994) Mechanical and electromechanical properties of the stereovillar bundles of isolated and cultured hair cells of the chicken. Hear Res 76:147–157.

    Article  PubMed  CAS  Google Scholar 

  • Brix J, Fischer FP, Manley GA (1994) The cuticular plate of the hair cell in relation to morphological gradients of the chicken basilar papilla. Hear Res 75:244256.

    Google Scholar 

  • Buchfellner E, Leppelsack H-J, Klump GM, Häusler U (1989) Gap detection in the starling (Sturnus vulgaris): II. Coding of gaps by forebrain neurons. J Comp Physiol A 164:539–549.

    Article  Google Scholar 

  • Burns EM, Arehart KH, Campbell SL (1992) Prevalence of spontaneous otoacoustic emissions in neonates. J Acoust Soc Am 91:1571–1575.

    Article  PubMed  CAS  Google Scholar 

  • Buus S, Klump GM, Gleich O, Langemann U (1995) An excitation pattern model for the starling (Sturnus vulgaris). J Acoust Soc Am 98:112–124.

    Article  PubMed  CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate Palaeontology and Evolution. New York: Freeman.

    Google Scholar 

  • Chandler JP (1984) Light and electron microscopic studies of the basilar papilla in the duck, Anas platyrhynchos: I. The hatchling. J Comp Neurol 222:506–522.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Salvi R, Shero M (1994) Cochlear frequency-place map in adult chickens: intracellular biocytin labeling. Hear Res 81:130–136.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Salvi RJ, Trautwein PG, Powers N (1996) Two-tone rate suppression boundaries of cochlear ganglion neurons in normal chickens. J Acoust Soc Am 100:442–450.

    Article  PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard J, Jorgensen MB (1996) One-tone suppression in the frog auditory nerve. J Acoust Soc Am 100:451–457.

    Article  PubMed  CAS  Google Scholar 

  • Code RA (1995) Efferent neurons to the macula lagena in the embryonic chick. Hear Res 82:26–30.

    Article  PubMed  CAS  Google Scholar 

  • Code RA, Carr CE (1994) Choline acetyltransferase-immunoreactive cochlear efferent neurons in the chick auditory brainstem. J Comp Neurol 340:161–173.

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM (1987) Acetylcholinesterase activity in the embryonic chick’s inner ear. Hear Res 28:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Cole KS, Gummer AW (1990) A double-label study of efferent projections to the cochlea of the chicken, Gallus domesticus. Exp Brain Res 82:585–588.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA (1987) Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hear Res 30:181–196.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Saunders JC, Tilney LG (1987) Hair cell damage produced by acoustic trauma in the chick cochlea. Hear Res 25:267–286.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Henson MM, Henson OW Jr (1992) Contractile proteins in the hyaline cells of the chicken cochlea. J Comp Neurol 324:353–364.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Lee KH, Stone JS, Picard DA (1994) Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage. Anat Embryol 189:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Counter SA, Tsao P (1986) Morphology of the seagull’s inner ear. Acta Otolaryngol 101:34–42.

    Article  PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibers and hair cells in the cochlea of the turtle. J Physiol Lond 306:79–125.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    PubMed  CAS  Google Scholar 

  • Desmedt JE, Delwaide PJ (1963) Neural inhibition in a bird: effect of strychnine and picrotoxin. Nature 200:583–585.

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE, Delwaide PJ (1965) Functional properties of the efferent cochlear bundle of the pigeon revealed by stereotaxic stimulation. Exp Neurol 11:126.

    Article  Google Scholar 

  • Dooling RJ (1992) Hearing in birds. In: Fay RR, Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing. Heidelberg, New York: Springer-Verlag, pp. 545–559.

    Chapter  Google Scholar 

  • Drenckhahn D, Merte C, von During M, Smolders J, Klinke R (1991) Actin, myosin and alpha-actinin containing filament bundles in hyaline cells of the caiman cochlea. Hear Res 54:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol A 182:695–702.

    Article  Google Scholar 

  • Eatock RA, Manley GA (1981) Auditory nerve fibre activity in the tokay gecko: II, temperature effect on tuning. J Comp Physiol A 142:219–226.

    Article  Google Scholar 

  • Eatock RA, Manley GA, Pawson L (1981) Auditory nerve fibre activity in the tokay gecko: I, implications for cochlear processing. J Comp Physiol A 142:203–218.

    Article  Google Scholar 

  • Fay RR (1990) Suppression and excitation in auditory nerve fibers of the goldfish, Carassius auratus. Hear Res 48:93–110.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Fay RR, Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing, Heidelberg, New York: Springer-Verlag, pp. 229–263.

    Chapter  Google Scholar 

  • Feduccia A (1980) The Age of Birds. Cambridge: Harvard University Press.

    Google Scholar 

  • Fettiplace R (1987) Electrical tuning of hair cells in the inner ear. Trends Neurosci 10:421–425.

    Article  Google Scholar 

  • Firbas W, Müller G (1983) The efferent innervation of the avian cochlea. Hear Res 10:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1994a) Quantitative TEM analysis of the barn owl basilar papilla. Hear Res 73:1–15.

    Article  CAS  Google Scholar 

  • Fischer FP (1994b) General pattern and morphological specializations of the avian cochlea. Scanning Microsc 8:351–364.

    CAS  Google Scholar 

  • Fischer FP (1998) Hair-cell morphology and innervation in the basilar papilla of the emu (Dromaius novaehollandiae). Hear Res 121:112–124.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP, Köppl C, Manley GA (1988) The basilar papilla of the barn owl Tyto alba: a quantitative morphological SEM analysis. Hear Res 34:87–101.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP, Brix J, Singer I, Miltz C (1991) Contacts between hair cells in the avian cochlea. Hear Res 53:281–292.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP, Miltz C, Singer I, Manley GA (1992) Morphological gradients in the starling basilar papilla. J Morphol 213:225–240.

    Article  Google Scholar 

  • Fischer FP, Eisensamer B, Manley GA (1994) Cochlear and lagenar ganglia of the chicken. J Morphol 220:71–83.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs PA, Evans MG (1990) Potassium currents in hair cells isolated from the cochlea of the chick. J Physiol Lond 429:529–521.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992a) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809.

    CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992b) A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc R Soc London B 248:35–40.

    Article  CAS  Google Scholar 

  • Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 8:2460–2467.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Evans MG, Murrow BW (1990) Calcium currents in hair cells isolated from the cochlea of the chick. J Physiol Lond 429:553–568.

    PubMed  CAS  Google Scholar 

  • Garrick LD, Lang JW, Herzog HA (1978) Social signals of adult American alligators. Bull Amer Mus Nat Hist 160:153–192.

    Google Scholar 

  • Gleich O (1987) Evidence for electrical tuning in the starling inner ear. In: Elsner N, Creutzfeld O (eds) New frontiers in brain research. Stuttgart, New York: Georg Thieme Verlag, p. 101.

    Google Scholar 

  • Gleich O (1989) Auditory primary afferents in the starling: correlation of function and morphology. Hear Res 37:255–268.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O (1994) Excitation patterns in the starling cochlea: a population study of primary auditory afferents. J Acoust Soc Am 95:401–409.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Dooling RJ (1995) Belgian Waterslager canaries: morphological and physiological studies of a mutant bird strain showing continuous hair-cell production. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds): Advances in Hearing Research, Singapore: World Scientific Publishers, pp. 40–49.

    Google Scholar 

  • Gleich O, Klump GM (1995) Temporal modulation transfer functions in the European starling (Sturnus vulgaris): II. Responses of auditory-nerve fibres. Hear Res 82:81–92.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Manley GA (1988) Quantitative morphological analysis of the sensory epithelium of the starling and pigeon basilar papilla. Hear Res 34:69–86.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Narins PM (1988) The phase response of primary auditory afferents in a songbird (Sturnus vulgaris L.). Hear Res 32:81–91.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Dooling RJ, Manley GA (1994) Inner-ear abnormalities and their functional consequences in Belgian Waterslager canaries (Serinus canarius). Hear Res 79:123–136.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Manley GA, Mandl A, Dooling R (1994) The basilar papilla of the canary and the zebra finch: a quantitative scanning electron microscopic description. J Morphol 221:1–24.

    Article  Google Scholar 

  • Gleich O, Klump GM, Dooling RJ (1995) Peripheral basis for the auditory deficit in Belgian Waterslager canaries (Serinus canarius). Hear Res 82:100–108.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Dooling RJ, Presson JC (1997) Evidence for supporting cell proliferation and hair cell differentiation in the basilar papilla of adult Belgian Waterslager canaries (Serinus canarius). J Comp Neurol 377:5–15.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Ryals BM, Dooling RJ (1998) The number of auditory nerve fibers in normal canaries and Belgian Waterslager canaries. 21st Midwinter Res. Mtg. Assoc. Res. Otolaryngol., Abstr. Nr. 788.

    Google Scholar 

  • Goldberg JM, Fernãndez C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025.

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356.

    Article  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species-29 years later. J Acoust Soc Am 87:2592–2605.

    Article  PubMed  CAS  Google Scholar 

  • Gross NB, Anderson DJ (1976) Single unit responses recorded from the first order neuron of the pigeon auditory system. Brain Res 101:209–222.

    Article  PubMed  CAS  Google Scholar 

  • Guinan JJ (1996) Physiology of olivocochlear efferents. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 435–502.

    Chapter  Google Scholar 

  • Gummer AW (1991a) First order temporal properties of spontaneous and tone-evoked activity of auditory afferent neurones in the cochlear ganglion of the pigeon. Hear Res 55:143–166.

    Article  CAS  Google Scholar 

  • Gummer AW (1991b) Postsynaptic inhibition can explain the concentration of short interspike intervals in avian auditory nerve fibres. Hear Res 55:231–243.

    Article  CAS  Google Scholar 

  • Gummer AW, Klinke R (1983) Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus. Hear Res 12:367–380.

    Article  PubMed  CAS  Google Scholar 

  • Gummer AW, Smolders JWT, Klinke R (1987) Basilar membrane motion in the pigeon measured with the Mössbauer technique. Hear Res 29:63–92.

    Article  PubMed  CAS  Google Scholar 

  • Hennig W (1983) Stammesgeschichte der Chordaten. Hamburg: Paul Parey Verlag.

    Google Scholar 

  • Henry KR, Lewis ER (1992) One-tone suppression in the cochlear nerve of the gerbil. Hear Res 63:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54:370–384.

    PubMed  CAS  Google Scholar 

  • Hill KG, Mo J, Stange G (1989a) Excitation and suppression of primary auditory fibres in the pigeon. Hear Res 39:37–48.

    Article  CAS  Google Scholar 

  • Hill KG, Mo J, Stange G (1989b) Induced suppression in spike responses to toneon-noise stimuli in the auditory nerve of the pigeon. Hear Res 39:49–62.

    Article  CAS  Google Scholar 

  • Hill KG, Stange G, Mo J (1989) Temporal synchronization in the primary auditory response in the pigeon. Hear Res 39:63–74.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1986) The ionic channels of a vertebrate hair cell. Hear Res 22:37.

    Article  Google Scholar 

  • Hudspeth AJ, Gillespie PG (1994) Pulling strings to tune transduction—adaptation by hair cells. Neuron 12:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Jahnke V, Lundquist PG, Wersäll J (1969) Some morphological aspects of sound perception in birds. Acta Otolaryngol 67:583–601.

    Article  PubMed  CAS  Google Scholar 

  • Jones SM, Jones TA (1995) The tonotopic map of the embryonic chick cochlea. Hear Res 82:149–157.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen JM, Christensen JT (1989) The inner ear of the common rhea (Rhea americana L.). Brain Behav Evol 34:273–280.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser A (1993) Das efferente Bündel des Hörorgans beim Huhn—Ursprung, Projektionen and Physiologie. Doctoral Dissertation, Institut für Zoologie der Technischen Universität München.

    Google Scholar 

  • Kaiser A, Manley GA (1994) Physiology of putative single cochlear efferents in the chicken. J Neurophysiol 72:2966–2979.

    PubMed  CAS  Google Scholar 

  • Kaiser A, Manley GA (1996) Brainstem projections of the Macula lagenae in the chicken. J Comp Neurol 374:108–117.

    Article  PubMed  CAS  Google Scholar 

  • Katayama A, Corwin JT (1989) Cell production in the chicken cochlea. J Comp Neurol 281:129–135.

    Article  PubMed  CAS  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from the human auditory system. J Acoust Soc Am 64:1386–1391.

    Article  PubMed  CAS  Google Scholar 

  • Keppler C, Schermuly L, Klinke R (1994) The course and morphology of efferent nerve fibres in the papilla basilaris of the pigeon (Columba livia). Hear Res 74:259–264.

    Article  PubMed  CAS  Google Scholar 

  • Kettembeil S, Manley GA, Siegl E (1995) Distortion-product otoacoustic emissions and their anaesthesia sensitivity in the European Starling and the Chicken. Hear Res 86:47–62.

    Article  PubMed  CAS  Google Scholar 

  • Ketten DR (1992) The marine mammal ear: specializations for aquatic audition and echolocation. In: Fay RR, Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing, Heidelberg, New York: Springer-Verlag, pp. 717–750.

    Chapter  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, Mass., MIT Press.

    Google Scholar 

  • Klinke R (1979) Comparative physiology of primary auditory neurons. In: Hoke M, de Boer E (eds) Models of the Auditory System and Related Signal Processing Techniques. Scand Audiol Suppl 9:49–61.

    Google Scholar 

  • Klinke R, Pause M (1980) Discharge properties of primary auditory fibres in Caiman crocodilus; comparisons and contrasts to the mammalian auditory nerve. Exp Brain Res 38:137–150.

    Article  PubMed  CAS  Google Scholar 

  • Klinke R, Schermuly L (1986) Inner ear mechanics of the crocodilian and avian basilar papillae in comparison to neuronal data. Hear Res 22:183–184.

    Article  Google Scholar 

  • Klinke R, Smolders JWT (1984) Hearing mechanisms in caiman and pigeon. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. Cambridge: Harvard University Press, pp. 195–211.

    Google Scholar 

  • Klinke R, Smolders JWT (1993) Performance of the avian inner ear. Progr Brain Res 97:31–43.

    Article  CAS  Google Scholar 

  • Klinke R, Müller M, Richter CP, Smolders J (1994) Preferred intervals in birds and mammals: a filter response to noise? Hear Res 74:238–246.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM, Baur A (1990) Intensity discrimination in the European starling (Sturnus vulgaris). Naturwiss 77:545–548.

    Article  Google Scholar 

  • Klump GM, Gleich 0 (1991) Gap detection in the European starling (Sturnus vulgaris) III. Processing in the peripheral auditory system. J Comp Physiol A. 168:469–476.

    Article  Google Scholar 

  • Klump GM, Maier EH (1989) Gap detection in the starling (Sturnus vulgaris): I. Psychophysical thresholds. J Comp Physiol A 164:531–539.

    Article  Google Scholar 

  • Klump GM, Okanoya K (1991) Temporal modulation transfer functions in the European starling (Sturnus vulgaris): I. Psychophysical modulation detection thresholds. Hear Res 52:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1970) Comparative neurophysiological studies of hearing and vocalizations in songbirds. Z vergl Physiol A 157:687–697.

    Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Amer Sci 61:414–424.

    Google Scholar 

  • Konishi M, Knudsen EI (1979) The oilbird: hearing and echolocation. Science 204:425–427.

    Article  PubMed  CAS  Google Scholar 

  • Köppl C (1993) Hair-cell specializations and the auditory fovea in the barn owl cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten S (eds) Biophysics of Hair-Cell Sensory Systems. London: World Scientific Publishers, pp. 216–222.

    Google Scholar 

  • Köppl C (1995) Otoacoustic emissions as an indicator for active cochlear mechanics: a primitive property of vertebrate auditory organs. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research. Singapore: World Scientific Publishers, pp. 207–216.

    Google Scholar 

  • Köppl C (1997a) Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurophysiol 77:364–377.

    Google Scholar 

  • Köppl C (1997b) Number and axon calibres of cochlear afferents in the barn owl. Auditory Neurosci 3:313–334.

    Google Scholar 

  • Köppl C (1997c) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321.

    Google Scholar 

  • Köppl C, Manley GA (1993) Distortion-product otoacoustic emissions in the bobtail lizard, II: Suppression tuning characteristics. J Acoust Soc Am 93:2834–2844.

    Article  Google Scholar 

  • Köppl C, Manley GA (1997) Frequency representation in the emu basilar papilla. J Acoust Soc Am 101:1574–1584.

    Article  Google Scholar 

  • Köppl C, Wegscheider A (1998) Axon numbers and diameters in the avian auditory nerve. 21st Midwinter Res. Mtg. Assoc. Res. Otolaryngol., Abstr. Nr. 401.

    Google Scholar 

  • Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol 171:695–704.

    Article  Google Scholar 

  • Köppl C, Yates GK, Manley GA (1997) The mechanics of the avian cochlea: rate-intensity functions of auditory-nerve fibres in the emu. In: Lewis E, Long G, Leake P, Narins P, Steele C (eds) Diversity in Auditory Mechanics. Singapore: World Scientific, pp. 77–82.

    Google Scholar 

  • Köppl C, Gleich O, Schwabedissen G, Siegl E, Manley GA (1998) Fine structure of the basilar papilla of the emu: implications for the evolution of avian hair-cell types. Hear Res 126:99–112.

    Article  PubMed  Google Scholar 

  • Kössl M, Vater M (1985) Evoked acoustic emissions and cochlear microphonics in the mustache bat, Pteronotus parnellii. Hear Res 19:157–170.

    Article  PubMed  Google Scholar 

  • Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioural audiogram. J Comp Physiol 129:1–4.

    Article  Google Scholar 

  • Ladhams A, Pickles JO (1996) Morphology of the monotreme organ of Corti and macula lagena. J Comp Neurol 366:335–347.

    Article  PubMed  CAS  Google Scholar 

  • Larsen ON, Dooling RJ, Ryals BM (1996) Roles of intracranial pressure in bird audition. In: Lewis E, Long G, Leake P, Narins P, Steele C (eds) Diversity in Auditory Mechanics. Singapore: World Scientific, pp. 11–17.

    Google Scholar 

  • Lavigne-Rebillard M, Cousillas H, Pujol R (1985) The very distal part of the basilar papilla in the chicken: a morphological approach. J Comp Neurol 238:340–347.

    Article  PubMed  CAS  Google Scholar 

  • Leake PA (1977) SEM observations of the cochlear duct in Caiman crocodilus. Scanning Electron Micoscopy, II, 437–444.

    Google Scholar 

  • Lewis ER, Henry KR (1992) Modulation of cochlear nerve spike rate by cardiac activity in the gerbil. Hear Res 63:7–11.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1979) Preferred intervals in the spontaneous activity of primary auditory neurones. Naturwiss 66:582.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1986) The evolution of the mechanisms of frequency selectivity in vertebrates. In: Moore BCJ, Patterson RD (eds) Auditory Frequency Selectivity. New York: Plenum, pp. 63–72.

    Chapter  Google Scholar 

  • Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Manley GA (1995) The avian hearing organ: a status report. In: Manley, GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research. Singapore: World Scientific Publishers, pp. 219–229.

    Google Scholar 

  • Manley GA (1996) Ontogeny of frequency mapping in the peripheral auditory system of birds and mammals: a critical review. Aud Neurosci 3:199–214.

    Google Scholar 

  • Manley GA, Gallo L (1997) Otoacoustic emissions, hair cells and myosin motors. J Acoust Soc Amer 102:1049–1055.

    Article  CAS  Google Scholar 

  • Manley GA, Gleich O (1984) Avian primary auditory neurones: the relationship between characteristic frequency and preferred intervals. Naturwiss 71:592–594.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Gleich O (1992) Evolution and specialization of function in the avian auditory periphery. In: Fay RR, Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing. Heidelberg, New York: Springer-Verlag, pp. 561–580.

    Chapter  Google Scholar 

  • Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opinion Neurobiol 8:468–474.

    Article  CAS  Google Scholar 

  • Manley GA, Taschenberger G (1993) Spontaneous otoacoustic emissions from a bird: a preliminary report. In: Duifhuis H, Horst JW, van Dijk P, van Netten S (eds) Biophysics of Hair-Cell Sensory Systems. London: World Scientific Publ. Co., pp. 33–39.

    Google Scholar 

  • Manley GA, Gleich O, Leppelsack HJ, Oeckinghaus H (1985) Activity patterns of cochlear ganglion neurones in the starling. J Comp Physiol A 157:161–181.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Brix J, Kaiser A (1987) Developmental stability of the tonotopic organization of the chick’s basilar papilla. Science 237:655–656.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Schulze M, Oeckinghaus H (1987) Otoacoustic emissions in a song bird. Hear Res 26:257–266.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Yates G, Köppl C (1988) Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua. Hear Res 33:181–190.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Gleich O, Kaiser A, Brix J (1989) Functional differentiation of sensory cells in the avian auditory periphery. J Comp Physiol 164:289–296.

    Article  Google Scholar 

  • Manley GA, Köppl C, Yates GK (1989) Micromechanical basis of high-frequency tuning in the bobtail lizard. In: Wilson JP, Kemp D (eds) Mechanics of Hearing. New York: Plenum Press, pp. 143–150.

    Google Scholar 

  • Manley GA, Haeseler C, Brix J (1991) Innervation patterns and spontaneous activity of afferent fibres to the lagenar macula and apical basilar papilla of the chick’s cochlea. Hear Res 56:211–226.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Kaiser A, Brix J, Gleich O (1991) Activity patterns of primary auditory-nerve fibres in chickens: development of fundamental properties. Hear Res 57:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Schwabedissen G, Gleich O (1993) Morphology of the basilar papilla of the budgerigar Melopsittacus undulatus. J Morphol 218:153–165.

    Article  Google Scholar 

  • Manley GA, Meyer B, Fischer FP, Schwabedissen G, Gleich O (1996) Surface morphology of the basilar papilla of the tufted duck Aythya fÅ«ligula and the domestic chicken Gallus gallus domesticas. J Morphol 227:197–212.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Yates GK (1997) Activity of primary auditory neurones in the cochlear ganglion of the emu Dromaiuus novaehollandiae: spontaneous discharge, frequency tuning and phase locking. J Acoust Soc Am 101:1560–1573.

    Article  PubMed  CAS  Google Scholar 

  • Murrow BW (1994) Position-dependent expression of potassium currents by chick cochlear hair cells. J Physiol Lond 480:247–259.

    PubMed  CAS  Google Scholar 

  • Murrow BW, Fuchs PA (1990) Preferential expression of transient current (IA) by short hair cells of the chick’s cochlea. Proc Roy Soc Lond (Biol) 242:189–195.

    Article  CAS  Google Scholar 

  • Ofsie MS, Cotanche DA (1996) Distribution of nerve fibers in the basilar papilla of normal and sound-damaged chick cochleae. J Comp Neurol 370:281–294.

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Sato T, Wada H, Takasaka T (1992) Frequency instability of the spontaneous otoacoustic emissions in the guinea pig. Abstr. 15. Mtg, Assoc. Research in Otolaryngol. p. 150.

    Google Scholar 

  • Okanoya K, Dooling RJ (1985) Colony differences in auditory thresholds in the canary (Serinus canarius). J Acoust Soc Am 78:1170–1176.

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Dooling RJ (1987) Strain differences in auditory thresholds in the canary (Serinus canaries). J Comp Psychol 101:213–215.

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Dooling RJ, Downing RD (1990) Hearing and vocalizations in hybrid Waterslager-Roller canaries (Serinas canarias). Hear Res 46:271–276.

    Article  PubMed  CAS  Google Scholar 

  • Padian K, Chiappe LM (1998) The origin and early evolution of birds. Biol Rev 73:1–42.

    Article  Google Scholar 

  • Patuzzi RP (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 186–257.

    Chapter  Google Scholar 

  • Patuzzi RP, Bull CL (1991) Electrical responses from the chicken basilar papilla. Hear Res 53:57–77.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Brix J, Comis SD, Gleich O, Köppl C, Manley GA, Osborne MP (1989) The organization of tip links and stereocilia on hair cells of bird and lizard basilar papillae. Hear Res 41:31–42.

    Article  PubMed  CAS  Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbelthiere II Das Gehörorgan der Reptilien, der Vögel and der Säugethiere. Stockholm: Samson and Wallin.

    Google Scholar 

  • Richter CP, Heynert S, Klinke R (1995) Rate-intensity functions of pigeon auditory-nerve afferents. Hear Res 83:19–25.

    Article  PubMed  CAS  Google Scholar 

  • Richter CP, Sauer G, Hoidis S, Klinke R (1996) Development of activity patterns in auditory nerve fibres of pigeons. Hear Res 95:77–86.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Ryals BM (1983) Development of the place principle: acoustic trauma. Science 219:512–514.

    Article  PubMed  CAS  Google Scholar 

  • Ruggero MA (1973) Response to noise of auditory nerve fibres in the squirrel monkey. J Neurosci 36:569–587.

    CAS  Google Scholar 

  • Runhaar G (1989) The surface morphology of the avian tectorial membrane. Hear Res 37:179–187.

    Article  PubMed  CAS  Google Scholar 

  • Russell I, Palmer AR (1986) Filtering due to inner hair-cell membrane properties and its relation to the phase-locking limit in cochlear nerve fibers. In: Moore BCJ, Patterson RR (eds) Auditory Frequency Selectivity. New York, London: Plenum Press, pp. 198–207.

    Google Scholar 

  • Sachs MB (1964) Responses to acoustic stimuli from single units in the eighth nerve of the green frog. J Acoust Soc Am 36:1956–1958.

    Article  Google Scholar 

  • Sachs MB, Kiang NYS (1968) Two-tone inhibition in auditory-nerve fibres. J Acoust Soc Am 43:1120–1128.

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB, Lewis RH, Young ED (1974) Discharge patterns of single fibers in the pigeon auditory nerve. Brain Res 70:431–447.

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB, Woolf NK, Sinnott JM (1980) Response properties of neurons in the avian auditory system: comparisons with mammalian homologues and consideration of the neural encoding of complex stimuli. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 323–353.

    Chapter  Google Scholar 

  • Salvi RJ, Saunders SS, Powers NL, Boettcher FA (1992) Discharge patterns of cochlear ganglion neurons in the chicken. J Comp Physiol 170:227–241.

    Article  CAS  Google Scholar 

  • Saunders SS, Salvi RJ (1993) Psychoacoustics of normal adult chickens: thresholds and temporal integration. J Acoust Soc Am 94:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Schermuly L, Klinke R (1985) Change of characteristic frequencies of pigeon primary auditory afferents with temperature. J Comp Physiol A 156:209–211.

    Article  Google Scholar 

  • Schermuly L, Klinke R (1990a) Infrasound sensitive neurones in the pigeon’s cochlear ganglion. J Comp Physiol A 166:355–363.

    Article  CAS  Google Scholar 

  • Schermuly L, Klinke R (1990b) Origin of infrasound sensitive neurones in the papilla basilaris of the pigeon: a HRP study. Hear Res 48:69–78.

    Article  CAS  Google Scholar 

  • Schmiedt RA, Zwislocki J, Hamernik RP (1980) Effects of hair-cell lesions on responses of cochlear nerve fibres. I. Lesions, tuning curves, two-tone inhibition and responses to trapezoidal-wave patterns. J Neurophysiol 43:1367–1389.

    PubMed  CAS  Google Scholar 

  • Schwartzkopff J, Winter P (1960) Zur Anatomie der Vogel-Cochlea unter natürlichen Bedingungen. Biol Zentralblatt 79:607–625.

    Google Scholar 

  • Schwarz IE, Schwarz DWF, Frederickson JM, Landolt JP (1981) Efferent vestibular neurons: a study employing retrograde tracer methods in the pigeon (Columba livia). J Comp Neurol 196:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DWF, Schwarz IE, Dersoe A (1992) Cochlear efferent neurons projecting to both ears in the chicken, Gallus domesticus. Hear Res 60:110–114.

    Article  PubMed  CAS  Google Scholar 

  • Smith CA (1985) Inner ear. In: King AS, McLeland J (eds) Form and Function in Birds, Vol 3. London: Academic Press, pp. 273–310.

    Google Scholar 

  • Smith CA, Konishi M, Schutt N (1985) Structure of the barn owl’s (Tyto alba) inner ear. Hear Res 17:237–247.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Klinke R (1984) Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus (L.). J Comp Physiol 155:19–30.

    Article  Google Scholar 

  • Smolders JWT, Klinke R (1986) Synchronized responses of primary auditory fibre populations in Caiman crocodilus (L.) to single tones and clicks. Hear Res 24:89–103.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Ding-Pfennigdorff D, Klinke R (1995) A functional map of the pigeon basilar papilla: correlation of the properties of single auditory nerve fibres and their peripheral origin. Hear Res 92:151–169.

    Article  PubMed  CAS  Google Scholar 

  • Steel KP (1995) Inherited hearing defects in mice. Annu Rev Genet 29:675–701.

    Article  PubMed  CAS  Google Scholar 

  • Steele CR (1996) Three-dimensional mechanical modeling of the cochlea. In: Lewis E, Long G, Lyon RF, Narins P, Steele CR, Hecht-Poinar E (eds) Diversity in Auditory Mechanics. Singapore: World Scientific, pp. 455–461.

    Google Scholar 

  • Stiebler IB, Narins PM (1990) Temperature-dependence of auditory nerve response properties in the frog. Hear Res 46:63–82.

    Article  PubMed  CAS  Google Scholar 

  • Strutz J (1981) The origin of centrifugal fibers to the inner ear in Caiman crocodilus. A horseradish peroxidase study. Neurosci Lett 27:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Strutz J, Schmidt CL (1982) Acoustic and vestibular efferent neurons in the chicken (Gallus domesticus). Acta Otolaryngol 94:45–51.

    Article  PubMed  CAS  Google Scholar 

  • Sugai T, Sugitani M, Ooyama H (1991) Effects of activation of the divergent efferent fibers on the spontaneous activity of vestibular afferent fibers in the toad. Jpn J Physiol 41:217–232.

    Article  PubMed  CAS  Google Scholar 

  • Sullivian WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799.

    Google Scholar 

  • Takasaka T, Smith CA (1971) The structure and innervation of the pigeon’s basilar papilla. J Ultrastruct Res 35:20–65.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Smith CA (1978) Structure of the chicken’s inner ear. Am J Anat 153:251–271.

    Article  PubMed  CAS  Google Scholar 

  • Taschenberger G (1995) Spontane otoakustische Emissionen and Verzerrungsprodukt-Emissionen der Schleiereule, Tyro alba guttata. Doctoral Dissertation, Institut für Zoologie der Technischen Universität München.

    Google Scholar 

  • Taschenberger G, Manley GA (1996) Influence of contralateral acoustic stimulation on distortion-product otoacoustic emissions in the barn owl. 19th Midwinter Res Mtg Assoc Res Otolaryngol., Abstr. Nr. 87.

    Google Scholar 

  • Taschenberger G, Manley GA (1997) Spontaneous otoacoustic emissions in the barn owl. Hear Res 110:61–76.

    Article  PubMed  CAS  Google Scholar 

  • Taschenberger G, Manley GA (1998) General characteristics and suppression tuning properties of the distortion-product otoacoustic emission 2f1—f2 in the barn owl. Hear Res 123:183–200.

    Article  PubMed  CAS  Google Scholar 

  • Temchin AN (1982) Acoustical reception in birds. In: Ilyichev VD, Gavrilov VM (eds) Acta XVII Congressus Internat Ornithologicus, Moscow, August 1982, pp. 275–282.

    Google Scholar 

  • Temchin AN (1988) Discharge patterns of single fibres in the pigeon’s auditory nerve. J Comp Physiol A 163:99–115.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol 96:807821.

    Google Scholar 

  • Tilney MS, Tilney LG, DeRosier DJ (1987) The distribution of hair cell bundle lengths and orientations suggests an unexpected pattern of hair cell stimulation in the chick cochlea. Hear Res 25:141–151.

    Article  PubMed  CAS  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. (Weyer EG, trans) New York: McGraw-Hill.

    Google Scholar 

  • von During M, Karduck A, Richter HG (1974) The fine structure and the inner ear in Caiman crocodilus. Z Anat Entwickl-Gesch 145:41–65.

    Article  Google Scholar 

  • von During M, Andres KH, Simon K (1985) The comparative anatomy of the basilar papillae in birds. Fortsch d Zool 30:681–685.

    Google Scholar 

  • Warchol ME, Dallos P (1989a) Neural response to very low-frequency sound in the avian cochlear nucleus. J Comp Physiol A 166:83–95.

    Article  CAS  Google Scholar 

  • Warchol ME, Dallos P (1989b) Localization of responsiveness to very low frequency sound on the avian basilar papilla. Abstracts 12th Mtg. Assoc Res Otolaryngol, p. 125.

    Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, and Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 411–448.

    Google Scholar 

  • Weiss TF, Rose C (1988) Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fibre responses in the alligator lizard. Hear Res 33:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Werner CF (1938) Das Innenohr des Heimkasuars and anderer, `Ratiten’. Zool Anz 124:67–74.

    Google Scholar 

  • Whitehead MC, Morest DK (1981) Dual populations of efferent and afferent cochlear axons in the chicken. Neurosci 6:2351–2365.

    Article  CAS  Google Scholar 

  • Whitehead ML, Lonsbury-Martin B, Martin GK, McCloy MJ (1996) Otoacoustic emissions: animal models and clinical observations. In: Van De Water TR, Popper AN, Fay RR (eds) Clinical Aspects of Hearing. New York: Springer Verlag, pp. 199–257.

    Chapter  Google Scholar 

  • Wilson JP, Smolders JWT, Klinke R (1985) Mechanics of the basilar membrane in Caiman crocodiles. Hear Res 18:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Winter M, Robertson D, Yates GM (1990) Diversity of characteristic frequency rate-intensity functions in guinea-pig auditory nerve fibres. Hear Res 45:191–202.

    Article  PubMed  CAS  Google Scholar 

  • Woolf NK, Sachs MB (1977) Phase-locking to tones in avian auditory-nerve fibers. J Acoust Soc Am 62:46.

    Article  Google Scholar 

  • Wu Y-C, Art JJ, Goodman MB, Fettiplace R (1995) A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells. Prog Biophys Molec Biol 63:131–158.

    Article  CAS  Google Scholar 

  • Zwislocki J, Cefaratti L (1989) Tectorial-membrane II: Stiffness measurements in vivo. Hear Res 42:211–227.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gleich, O., Manley, G.A. (2000). The Hearing Organ of Birds and Crocodilia. In: Dooling, R.J., Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Birds and Reptiles. Springer Handbook of Auditory Research, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1182-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1182-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7036-2

  • Online ISBN: 978-1-4612-1182-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics