Skip to main content

Physiology of Olivocochlear Efferents

  • Chapter
The Cochlea

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 8))

Abstract

Olivocochlear efferent neurons originate in the brain stem and terminate in the organ of Corti, thereby allowing the central nervous system to influence the operation of the cochlea. This chapter reviews the physiology and possible functional utility of mammalian cochlear efferents. Efferent physiology in a few other hair cell systems is also reviewed for the insight provided into mammalian efferent physiology. First a historical overview is presented, and then specific topics are considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J (1995) Sound stimulation induces Fos-related antigens in cells with common morphological properties throughout the auditory brainstem. J Comp Neurol 361:645–688.

    PubMed  CAS  Google Scholar 

  • Adams JC, Mroz EA, Sewell WF (1987) A possible neurotransmitter role for CGRP in a hair-cell sensory organ. Brain Res 419:347–351.

    PubMed  CAS  Google Scholar 

  • Altschuler RA, Fex J (1986) Efferent neurotransmitters. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 383–396.

    Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1982) Efferent regulation of hair cells in the turtle cochlea. Proc R Soc Lond B 216:377–384.

    PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair cells. J Physiol 356:525–550.

    PubMed  CAS  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1985) Efferent modulation of hair cell tuning in the cochlea of the turtle. J Physiol 360:397–421.

    PubMed  CAS  Google Scholar 

  • Avan P, Bonfils P (1992) Analysis of possible interactions of an attentional task with cochlear micromechanics. Hear Res 57:269–275.

    PubMed  CAS  Google Scholar 

  • Avan P, Bonfils P, Loth D, Elbez M, Erminy M (1995) Transient-evoked oto-acoustic emissions and high-frequency acoustic trauma in the guinea pig. J Acoust Soc Am 97:3102–3020.

    Google Scholar 

  • Baird RA, Desmadryl G, Fernández C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203.

    PubMed  CAS  Google Scholar 

  • Bobbin RP, Fallon M, Puel JL, Bryant G, Bledsoe SC Jr, Zajic G, Schacht J (1990) Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells. Hear Res 47:39–52.

    PubMed  CAS  Google Scholar 

  • Borg E, Zakrisson J-E (1975) The stapedius muscle and speech perception. Symp Zool Soc Lond 37:51–68.

    Google Scholar 

  • Boyle R, Highstein SM (1990) Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents. J Neurosci 10:1570–1582.

    PubMed  CAS  Google Scholar 

  • Brown AM (1988) Continuous low level sound alters cochlear mechanics: an efferent effect? Hear Res 34:27–38.

    PubMed  CAS  Google Scholar 

  • Brown MC (1987) Morphology of labeled efferent fibers in the guinea pig cochlea. J Comp Neurol 260:605–618.

    PubMed  CAS  Google Scholar 

  • Brown MC (1989) Morphology and response properties of single olivocochlear efferents in the guinea pig. Hear Res 40:93–110.

    PubMed  CAS  Google Scholar 

  • Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea pig. J Physiol 354:625–646.

    PubMed  CAS  Google Scholar 

  • Brown MC, Nuttall AL, Masta RI (1983) Intracellular recodings from cochlear inner hair cells: effects of stimulation of the crossed olivocochlear efferents. Science 222:69–72.

    PubMed  CAS  Google Scholar 

  • Brown MC, Pierce S, Berglund AM (1991) Cochlear-nucleus branches of thick (medial) olivocochlear fibers in the mouse: a cochleotopic projection. J Comp Neurol 303:300–315.

    PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical response of isolated cochlear outer hair cells. Science 277:194–196.

    Google Scholar 

  • Bufñ W (1978) Auditory nerve fiber activity influenced by contralateral ear sound stimulation. Exp Neurol 59:62–74.

    Google Scholar 

  • Burns EM, Harrison WA, Bulen JC, Keefe DH (1993) Voluntary contraction of middle ear muscles: effects on input impedance, energy reflectance and spontaneous otoacoustic emissions. Hear Res 67:117–128.

    PubMed  CAS  Google Scholar 

  • Chéry-Croze A, Moulin A, Collet L (1993) Effect of contralateral sound stimulation on the distortion product 2f1 - f2 in humans: evidence of a frequency specificity. Hear Res 68:53–58.

    PubMed  Google Scholar 

  • Cody AR, Johnstone BM (1982a). Acoustically evoked activity of single efferent neurons in the guinea pig cochlea. J Acoust Soc Am 72:280–282.

    PubMed  CAS  Google Scholar 

  • Cody AR, Johnstone BM (1982b) Temporary threshold shift modified by binaural acoustic stimulation. Hear Res 6:199–205.

    PubMed  CAS  Google Scholar 

  • Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43:251–262.

    PubMed  CAS  Google Scholar 

  • Cooper NP, Rhode WS (1992) Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: sharp tuning and nonlinearity in the absence of baseline position shifts. Hear Res 63:163–190.

    PubMed  CAS  Google Scholar 

  • Dallos P, Cheatham MA (1976) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512.

    PubMed  CAS  Google Scholar 

  • Dallos P, Evans BN (1995) High-frequency motility of outer hair cells and the cochlear amplifier. Science 267:2006–2009.

    PubMed  CAS  Google Scholar 

  • Davis H (1965) A model for transducer action in the cochlea. Cold Spring Harbor Symp Quant Biol 30:181–189.

    PubMed  CAS  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    PubMed  CAS  Google Scholar 

  • de Boer E (1990) Wave propagation, activity and frequency selectivity in the cochlea. In: Grandori F, Cianfrone G, Kemp DT (eds) Cochlear Mechanisms and Otoacoustic Emissions. Basel: Karger, pp. 1–12.

    Google Scholar 

  • Desmedt JE (1962) Auditory-evoked potentials from cochlea to cortex as influenced by activation of the efferent olivocochlear bundle. J Acoust Soc Am 34:1478–1496.

    Google Scholar 

  • Dewson JH (1968) Efferent olivocochlear bundle: some relationships to stimulus discrimination in noise. J Neurophysiol 31:122–130.

    PubMed  Google Scholar 

  • Doi T, Ohmori H (1993) Acetylcholine increases intracellular Ca’ concentration and hyperpolarizes the guinea-pig outer hair cells. Hear Res 67:179–188.

    PubMed  CAS  Google Scholar 

  • Dolan DF, Nuttall AL (1988) Masked cochlear whole-nerve response intensity functions altered by electrical stimulation of the crossed olivocochlear bundle. J Acoust Soc Am 83:1081–1086.

    PubMed  CAS  Google Scholar 

  • Dolan DF, Nuttall AL (1994) Basilar membrane movement evoked by sound is altered by electrical stimulation of the crossed olivocochlear bundle. Assoc Res Otolaryngol Abstr 17:89.

    Google Scholar 

  • Drescher MJ, Drescher DG, Medina JE (1983) Effect of sound stimulation at several levels on concentration of primary amines, including neurotransmitter candidates, in perilymph of the guinea pig inner ear. J Neurochem 41:309–320.

    PubMed  CAS  Google Scholar 

  • Eróstegui C, Nenov AP, Norris CH, Bobbin RP (1994) Acetylcholine activates a K+ conductance permeable to Cs+ in guinea pig outer hair cells. Hear Res 81:119–129.

    PubMed  Google Scholar 

  • Evans BN, Hallworth R, Dallos P (1991) Outer hair cell electromotility: the sensitivity and vulnerability of the DC component. Hear Res 52:288–304.

    PubMed  CAS  Google Scholar 

  • Eybalin M, Pujol R (1989) Cochlear neuroactive substances. Arch Otorhinolaryngol 246:228–234.

    PubMed  CAS  Google Scholar 

  • Eybalin M, Rebillard G, Jarry T, Cupo A (1987) Effect of noise level on Met-enkephalin content of the guinea pig cochlea. Brain Res 418:189–192.

    PubMed  CAS  Google Scholar 

  • Eybalin M, Parnaud C, Geffard M, Pujol R (1988) Immunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea pig organ of Corti. Neuroscience 24:29–38.

    PubMed  CAS  Google Scholar 

  • Faye-Lund H (1986) Projection from the inferior colliculus to the superior olivary complex in the albino rat. Anat Embryol 175:35–52.

    PubMed  CAS  Google Scholar 

  • Felix D, Ehrenberger K (1992) The efferent modulation of mammalian inner hair cell afferents. Hear Res 64:1–5.

    PubMed  CAS  Google Scholar 

  • Fernández C, Goldberg JM, Baird RA (1988) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–780.

    Google Scholar 

  • Fex J (1959) Augmentation of cochlear microphonic by stimulation of efferent fibers to the cochlea. Acta Otolaryngol 50:540–541.

    PubMed  CAS  Google Scholar 

  • Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibers in cat. Acta Physiol Scand 55:2–68.

    Google Scholar 

  • Fex J (1965) Auditory activity in the uncrossed centrifugal cochlear fibers in cat. A study of a feedback system, II. Acta Physiol Scand 64:43–57.

    PubMed  CAS  Google Scholar 

  • Fex J (1967) Efferent inhibition in the cochlea related to hair-cell do activity: study of postsynaptic activity of the crossed olivo-cochlear fibers in the cat. J Acoust Soc Am 41:666–675.

    PubMed  CAS  Google Scholar 

  • Fisch U (1970) Transtemporal surgery of the internal auditory canal: report of 92 cases, technique, indications and results. Adv Otorhinolaryngol 17:203–240.

    PubMed  CAS  Google Scholar 

  • Fitzgerald M, Woolf CJ (1981) Effects of cutaneous nerve and intraspinal conditioning on C-fibre efferent terminal excitability in decerebrate spinal rats. J Physiol (Lond) 318:25–39.

    CAS  Google Scholar 

  • Flock Å, Russell IJ (1973) The post-synaptic action of efferent fibres in the lateral line organ of the burbot Lota Iota. J Physiol 35:591–605.

    Google Scholar 

  • Flock Å, Russell IJ (1976) Inhibition by efferent nerve fibres, action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota Iota. J Physiol 257:45–62.

    PubMed  CAS  Google Scholar 

  • Folsom RC, Owsley RM (1987) N1 action potentials in humans. Influence of simultaneous contralateral stimulation. Acta Otolaryngol (Stockh) 103:262–265.

    Google Scholar 

  • Froehlich P, Collet L, Chanal JM, Morgon A (1990) Variability of the influence of a visual task on the active micromechanical properties of the cochlea. Brain Res 508:286–288.

    PubMed  CAS  Google Scholar 

  • Froehlich P, Collet L, Valatx JL, Morgon A (1993) Sleep and active cochlear micromechanical properties in human subjects. Hear Res 66:1–7.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992) A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc R Soc Lond B 248:35–40.

    CAS  Google Scholar 

  • Galambos R (1956) Suppression of auditory activity by stimulation of efferent fibers to the cochlea. J Neurophysiol 19:424–437.

    PubMed  CAS  Google Scholar 

  • Geisler CD (1974a) Model of crossed olivocochlear bundle effects. J Acoust Soc Am 56:1910–1912.

    PubMed  CAS  Google Scholar 

  • Geisler CD (1974b) Hypothesis on the function of the crossed olivocochlear bundle. J Acoust Soc Am 56:1908–1909.

    PubMed  CAS  Google Scholar 

  • Gifford ML, Guinan JJ Jr (1983) Effects of cross-olivocochlear-bundle stimulation on cat auditory nerve fiber responses to tones. J Acoust Soc Am 74:115–123.

    PubMed  CAS  Google Scholar 

  • Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29:179–194.

    PubMed  CAS  Google Scholar 

  • Gobsch H, Kevanishvili Z, Gamgebeli Z, Gvelesiani T (1992) Behavior of delayed evoked otoacoustic emission under forward masking paradigm. Scand Audiol 21:143–148.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernández C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Desemadryl G, Fernández C, Baird RA (1990) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804.

    PubMed  CAS  Google Scholar 

  • Guinan JJ Jr (1986) Effect of efferent neural activity on cochlear mechanics. Scand Audiol Suppl 25:53–62.

    PubMed  Google Scholar 

  • Guinan JJ Jr (1990) Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. In: Dallos P, Geisler CD, Matthews JW, Steele CR (eds) Mechanics and Biophysics of Hearing. Madison, WI: Springer-Verlag, pp. 170–177.

    Google Scholar 

  • Guinan JJ Jr (1991) Inhibition of stimulus frequency emissions by medial olivo-cochlear efferent neurons in cats. Assoc Res Otolaryngol Abstr 14:129.

    Google Scholar 

  • Guinan JJ Jr, Gifford ML (1988a) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions. Hear Res 33:97–114.

    PubMed  Google Scholar 

  • Guinan JJ Jr, Gifford ML (1988b) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. II. Spontaneous rate. Hear Res 33:115–128.

    PubMed  Google Scholar 

  • Guinan JJ Jr, Gifford ML (1988c) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF. Hear Res 37:29–46.

    PubMed  Google Scholar 

  • Guinan JJ Jr, Stankovic KM (1995) Medial olivocochlear efferent inhibition of auditory-nerve firing mediated by changes in endocochlear potential. Assoc. Res Otolaryngol Abstr 18:172.

    Google Scholar 

  • Guinan JJ Jr, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex II: Locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166.

    Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1983) Differential olivocochlear projections from lateral vs. medial zones of the superior olivary complex. J Comp Neurol 221:358–370.

    PubMed  Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1984) Topographic organization of the olivocochlear projections from lateral and medial zones of the superior olivary complex. J Comp Neurol 226:21–27.

    PubMed  Google Scholar 

  • Guinan JJ Jr, Joseph MP, Norris BE (1989) Brainstem facial-motor pathways from two distinct groups of stapedius motoneurons in the cat. J Comp Neurol 289:134–144.

    Google Scholar 

  • Gummer M, Yates GK, Johnstone BM (1988) Modulation transfer function of efferent neurons in the guinea pig cochlea. Hear Res 36:41–52.

    PubMed  CAS  Google Scholar 

  • Hallin RG, Torebjork HE (1973) Electrically induced A and C fibre responses in intact human skin nerves. Exp Brain Res 16:309–320.

    PubMed  CAS  Google Scholar 

  • Handrock M, Zeisberg J (1982) The influence of the efferent system on adaptation, temporary and permanent threshold shift. Arch Otorhinolaryngol 234:191–195.

    PubMed  CAS  Google Scholar 

  • Harrison WA, Burns EM (1993) Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J Acoust Soc Am 94:2649–2658.

    PubMed  CAS  Google Scholar 

  • Hildesheimer M, Makai E, Muchnik C, Rubinstein M (1990) The influence of the efferent system on acoustic overstimulation. Hear Res 43:263–268.

    PubMed  CAS  Google Scholar 

  • Hood LJ, Berlin CI, Wakefield L, Hurley A (1995) Noise duration affects bilateral, ipsilateral and contralateral suppression of transient-evoked otoacoustic emissions in humans. Assoc Res Otolaryngol Abstr 18:123.

    Google Scholar 

  • Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc R Soc Lond B 244:161–167.

    CAS  Google Scholar 

  • Igarashi M, Alford BR, Nakai Y, Gordon WP (1972) Behavioral auditory function after transection of crossed olivo-cochlear bundle in the cat. I. Pure-tone threshold and perceptual signal-to-noise ratio. Acta Otolaryngol (Stockh) 73:455–466.

    CAS  Google Scholar 

  • Kakehata S, Nakagawa T, Takasaka T, Akaike N (1994) Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea-pig cochlea. J Physiol 463:227–244.

    Google Scholar 

  • Kawase T, Liberman MC (1993) Anti-masking effects of the olivocochlear reflex, I: Enhancement of compound action potentials to masked tones. J Neurophysiol 70:2519–2532.

    PubMed  CAS  Google Scholar 

  • Kawase T, Delgutte B, Liberman MC (1993) Anti-masking effects of the olivocochlear reflex, II: Enhancement of auditory-nerve response to masked tones. J Neurophysiol 70:2533–2549.

    PubMed  CAS  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.

    PubMed  CAS  Google Scholar 

  • Kemp DT, Chum R (1980) Properties of the generator of stimulated acoustic emissions. Hear Res 2:213–232.

    PubMed  CAS  Google Scholar 

  • Kemp DT, Souter M (1988) A new rapid component in the cochlear response to brief electrical efferent stimulation. Hear Res 34:49–62.

    PubMed  CAS  Google Scholar 

  • Kevanishvili Z, Gobsch H, Gvelesiani T, Gangebeli Z (1992) Evoked otoacoustic emission: behaviour under the forward masking paradigm. ORL 54:229–234.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Moxon EC, Kahn AR (1976) The relationship of gross potentials recorded from the cochlea to single unit activity in the auditory nerve. In: Ruben RJ, Elberling C, Salomon G (eds) Electrocochleography. Baltimore: University Park Press, pp. 95–115.

    Google Scholar 

  • Kim DO, Molnar CE, Matthews JW (1980) Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure. J Acoust Soc Am 67:1704–1721.

    PubMed  CAS  Google Scholar 

  • Kimura R, Wersäll J (1962) Termination of the olivocochlear bundle in relation to the outer hair cells of the organ of Corti in guinea pig. Acta Otolaryngol (Stockh) 55:11–32.

    CAS  Google Scholar 

  • Kingsley RE, Barnes CD (1973) Olivo-cochlear inhibition during physostigmineinduced activity in the pontine reticular formation in the decerebrate cat. Exp Neurol 40:43–51.

    PubMed  CAS  Google Scholar 

  • Kirk DL, Johnstone BM (1993) Modulation of f2-fl: evidence for a GABA-ergic efferent system in apical cochlea of the guinea pig. Hear Res 67:20–34.

    PubMed  CAS  Google Scholar 

  • Kittrell BJ, Dalland JI (1969) Frequency dependence of cochlear microphonic augmentation produced by olivo-cochlear bundle stimulation. Laryngoscope 79:228–238.

    PubMed  CAS  Google Scholar 

  • Klinke E, Schmidt CL (1970) Efferent influence on the vestibular organ during active movements of the body. Pflügers Arch Ges Physiol 318:325–332.

    CAS  Google Scholar 

  • Konishi T, Slepian JZ (1971) Effects of the electrical stimulation of the crossed olivocochlear bundle on cochlear potentials recorded with intracochlear electrodes in guinea pigs. J Acoust Soc Am 49:1762–1769.

    PubMed  CAS  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1993) Contralateral sound suppresses distortion product otoacoustic emissions through cholinergic mechanisms. Hear Res 68:97–106.

    PubMed  CAS  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1994) A nicotinic-like receptor mediates suppression of distortion product otoacoustic emissions by contralateral sound. Hear Res 74:122–134.

    PubMed  CAS  Google Scholar 

  • Kujawa SG, Fallon M, Bobbin RP (1995) Time-varying alterations in the F2 - f1, DPOAE response to continuous primary stimulation. I. Response characterization and contribution of the olivocochlear efferents. Hear Res 85:142–154.

    PubMed  CAS  Google Scholar 

  • Lewis ER, Henry KR (1992) Modulation of cochlear nerve spike rate by cardiac activity in the gerbil. Hear Res 63:7–11.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1980) Efferent synapses in the inner hair cell area of the cat cochlea: an electron microscopic study of serial sections. Hear Res 3:189–204.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1988a). Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60:1779–1798.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1988b) Physiology of cochlear efferent and afferent neurons: direct comparisons in the same animal. Hear Res 34:179–192.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1989) Rapid assessment of sound-evoked olivocochlear feedback: suppression of compound action potentials by contralateral sound. Hear Res 38:47–56.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1990) Effects of chronic cochlear de-efferentation on auditory-nerve response. Hear Res 49:209–224.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1991) The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury. J Neurophysiol 65:123–132.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24:17–36.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460.

    PubMed  CAS  Google Scholar 

  • Long G, Talmadge CI, Shaffer L (1994) The effects of contralateral stimulation on synchronous evoked otoacoustic emissions. J Acoust Soc Am 95:2844.

    Google Scholar 

  • Lowe M, Robertson D (1995) The behaviour of the f2-f1, acoustic distortion product: lack of effect of brainstem lesions in anaesthetized guinea pigs. Hear Res 83:133–141.

    PubMed  CAS  Google Scholar 

  • Lukas JH (1981) The role of efferent inhibition in human auditory attention: an examination of the auditory brainstem potential. Int J Neurosci 12:137–145.

    PubMed  CAS  Google Scholar 

  • Martin GK, Lonsbury-Martin BL, Probst R, Coats AC (1988) Spontaneous otoacoustic emissions in a nonhuman primate. I. Basic features and relations to other emissions. Hear Res 33:49–68.

    PubMed  CAS  Google Scholar 

  • May BJ, McQuone SJ, Lavoie A (1995) Effects of olivocochlear lesions on intensity discrimination in cats. Assoc Res Otolaryngol Abstr 18:146.

    Google Scholar 

  • McCue MP, Guinan JJ Jr (1994a) Acoustically-responsive fibers in the vestibular nerve of the cat. J Neurosci 14:6058–6070.

    Google Scholar 

  • McCue MP, Guinan JJ Jr (1994b) Influence of efferent stimulation on acoustically-responsive vestibular afferents in the cat. J Neurosci 14:6071–6083.

    Google Scholar 

  • McQuone SJ, May BJ (1993) Effects of olivocochlear efferent lesions on intensity discrimination in noise. Assoc Res Otolaryngol Abstr 16:51.

    Google Scholar 

  • Micheyl C, Collet L (1993) Involvement of medial olivocochlear system in detection in noise. J Acoust Soc Am 93:2314.

    Google Scholar 

  • Mott JB, Norton SJ, Neely ST, Warr WB (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear Res 38:229–242.

    PubMed  CAS  Google Scholar 

  • Moulin A, Collet L, Duclaux R (1993) Contralateral auditory stimulation alters acoustic distortion products in humans. Hear Res 65:193–210.

    PubMed  CAS  Google Scholar 

  • Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72.

    PubMed  CAS  Google Scholar 

  • Mountain DC, Geisler CD, Hubbard AE (1980) Stimulation of efferents alters the cochlear microphonic and the sound induced resistance changes measured in scala media of the guinea pig. Hear Res 3:231–240.

    PubMed  CAS  Google Scholar 

  • Murata K, Tanahashi T, Horidawa J, Funai HM (1980) Mechanical and neural interactions between binaurally applied sounds in cat cochlear nerve fibers. Neurosci Lett 18:289–294.

    PubMed  CAS  Google Scholar 

  • Murata K, Moriyama T, Hosokawa Y, Minami S (1991) Alternating current induced otoacoustic emissions in the guinea pig. Hear Res 55:201–214.

    PubMed  CAS  Google Scholar 

  • Nieder P, Nieder I (1970) Crossed olivocochlear bundle: electrical stimulation enhances masked neural responses to loud clicks. Brain Res 21:135–137.

    PubMed  CAS  Google Scholar 

  • Norman M, Thornton ARD (1993) Frequency analysis of the contralateral suppression of evoked otoacoustic emissions by narrow-band noise. Br J Audiol 27:281–289.

    PubMed  CAS  Google Scholar 

  • Norton SJ, Neely ST (1987) Tone-burst-evoked otoacoustic emissions from normal-hearing subjects. J Acoust Soc Am 81:1860–1872.

    PubMed  CAS  Google Scholar 

  • Oatman LC (1971) Role of visual attention on auditory evoked potentials in unanesthetized cats. Exp Neurol 32:341–356.

    PubMed  CAS  Google Scholar 

  • Oatman LC (1976) Effects of visual attention on the intensity of auditory evoked potentials. Exp Neurol 51:41–53.

    PubMed  CAS  Google Scholar 

  • Oatman LC, Anderson BW (1977) Effects of visual attention on tone burst evoked auditory potentials. Exp Neurol 57:200–211.

    PubMed  CAS  Google Scholar 

  • Pang XD, Peake WT (1986) How do contractions of the stapedius muscle alter the acoustic properties of the ear? In: Allen JB, Hall JL, Hubbard A, Neely SI, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 36–43.

    Google Scholar 

  • Patuzzi R, Rajan R (1990) Does electrical stimulation of the crossed olivo-cochlear bundle produce movement of the organ of Corti? Hear Res 45:15–32.

    PubMed  CAS  Google Scholar 

  • Patuzzi RB, Thompson ML (1991) Cochlear efferent neurones and protection against acoustic trauma: protection of outer hair cell receptor current and interanimal variability. Hear Res 54:45–58.

    PubMed  CAS  Google Scholar 

  • Pfalz RKJ (1969) Absence of a function for the crossed olivocochlear bundle under physiological conditions. Arch Klin Exp Ohr Nas Kehlk Heilk 193:89–100.

    CAS  Google Scholar 

  • Picton TW, Hillyard SA (1974) Human auditory evoked potentials. II. Effects of attention. Electroenceph Clin Neurophysiol 36:191–199.

    PubMed  CAS  Google Scholar 

  • Picton TW, Hillyard SA, Galambos R, Schiff M (1971) Human auditory attention: a central or peripheral process? Science 173:351–353.

    PubMed  CAS  Google Scholar 

  • Puel J-L, Rebillard G (1990) Effect of contralateral sound stimulation on the distortion product 2F1–F2: evidence that the medial efferent system is involved. J Acoust Soc Am 87:1630–1635.

    PubMed  CAS  Google Scholar 

  • Puel J-L, Bobbin RP, Fallon M (1988) An ipsilateral cochlear efferent loop protects the cochlea during intense sound exposure. Hear Res 37:65–70.

    PubMed  CAS  Google Scholar 

  • Puel J-L, Bonfils P, Pujol R (1988) Selective attention modifies the active micromechanical properties of the cochlea. Brain Res 447:380–383.

    PubMed  CAS  Google Scholar 

  • Puria S, Guinan JJ Jr, Liberman MC (1996) Olivocochlear reflex assays: effects of contralateral sound on compound action potentials vs. ear-canal distortion products. J Acoust Soc Am 99:500–507.

    PubMed  CAS  Google Scholar 

  • Rajan R (1988a) Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters. J Neurophysiol 60:549–568.

    PubMed  CAS  Google Scholar 

  • Rajan R (1988b) Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts. J Neurophysiol 60:569–579.

    PubMed  CAS  Google Scholar 

  • Rajan R (1990) Electrical stimulation of the inferior colliculus at low rates protects the cochlea from auditory desensitization. Brain Res 506:192–204.

    PubMed  CAS  Google Scholar 

  • Rajan R, Johnstone BM (1983) Crossed cochlear influences on monaural temporary threshold shifts. Hear Res 9:279–294.

    PubMed  CAS  Google Scholar 

  • Rajan R, Johnstone BM (1989) Contralateral cochlear destruction mediates protection from monaural loud sound exposures through the crossed olivocochlear bundle. Hear Res 39:263–278.

    PubMed  CAS  Google Scholar 

  • Rasmussen GL (1946) The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol 84:141–219.

    PubMed  CAS  Google Scholar 

  • Rasmussen GL (1960) Efferent fibers of cochlear nerve and cochlear nucleus. In: Rasmussen GL, Windle WF (eds) Neural Mechanisms of the Auditory and Vestibular Systems. Springfield, IL: Thomas, pp. 105–115.

    Google Scholar 

  • Reiter ER, Liberman MC (1995) Efferent-mediated protection from acoustic overexposure: relation to “slow effects” of olivocochlear stimulation. J Neurophysiol 73:506–514.

    PubMed  CAS  Google Scholar 

  • Rhode WS (1971) Observations of the vibration of basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231.

    PubMed  Google Scholar 

  • Rhode WS (1973) An investigation of postmortem cochlear mechanics using the Mössbauer effect. In: Møller AR (ed) Basic Mechanisms of Hearing. New York: Academic Press, pp. 49–67.

    Google Scholar 

  • Roberts BL, Meredith GE (1992) The efferent innervation of the ear: variations on an enigma. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 185–210.

    Google Scholar 

  • Roberts BL, Russell IJ (1972) The activity of lateral-line efferent neurones in stationary and swimming dogfish. J Exp Biol 57:435–448.

    PubMed  CAS  Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15:113–121.

    PubMed  CAS  Google Scholar 

  • Robertson D, Anderson C-J (1994) Acute and chronic effects of unilateral elimination of auditory nerve activity on susceptibility to temporary deafness induced by loud sound in the guinea pig. Brain Res 646:37–43.

    PubMed  CAS  Google Scholar 

  • Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurons in the guinea pig cochlea. Hear Res 20:63–77.

    PubMed  CAS  Google Scholar 

  • Robertson D, Gummer M (1988) Physiology of cochlear efferents in the mammal. In: Syka J, Masterton RB (eds) Auditory Pathways, Structure and Function. New York: Plenum, pp. 269–278.

    Google Scholar 

  • Robertson D, Winter IM (1988) Cochlear nucleus inputs to olivocochlear neurons revealed by combined anterograde and retrograde labelling in the guinea pig. Brain Res 462:47–55.

    PubMed  CAS  Google Scholar 

  • Robertson D, Anderson C-J, Cole KS (1987) Segregation of efferent projections to different turns of the guinea pig cochlea. Hear Res 25:69–76.

    PubMed  CAS  Google Scholar 

  • Robertson D, Cole KS, Cobett K (1987) Quantitative estimate of bilaterally projecting medial olivocochlear neurons in the guinea pig brainstem. Hear Res 27:177–181.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. J Acoust Soc Am 80:1364–1374.

    PubMed  CAS  Google Scholar 

  • Roddy J, Hubbard AE, Mountain DC, Xue S (1994) Effects of electrical biasing on electrically-evoked otoacoustic emissions. Hear Res 73:148–154.

    PubMed  CAS  Google Scholar 

  • Russell IJ (1971) The role of the lateral-line efferent system of Xenopus laevis. J Exp Biol 54:621–641.

    PubMed  CAS  Google Scholar 

  • Ryan S, Kemp DT, Hinchcliffe R (1991) The influence of contralateral acoustic stimulation on click-evoked otoacoustic emission in humans. Br J Audiol 25:391–397.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Blackburn CC (1989) Processing of complex stimuli in the anteroventral cochlear nucleus. Assoc Res Otolaryngol Abstr 12:5–6.

    Google Scholar 

  • Sahley TL, Nodar RH (1994) Improvement in auditory function following pentazocine suggests a role for dynorphins in auditory sensitivity. Ear Hear 15:422–431.

    PubMed  CAS  Google Scholar 

  • Sahley TL, Kalish RB, Musiek FE, Hoffman DW (1991) Effects of opioid drugs on auditory evoked potentials suggest a role of lateral olivocochlear dynorphins in auditory function. Hear Res 55:133–142.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150.

    PubMed  CAS  Google Scholar 

  • Scharf B, Quigley S, Aoki C, Peachey N, Reeves A (1987) Focused auditory attention and frequency selectivity. Percept Psychophys 42:215–223.

    PubMed  CAS  Google Scholar 

  • Scharf B, Nadol J, Magnan J, Chays A, Marchioni A (1993) Does efferent input improve the detection of tones in monaural noise? In: Verrillo R (ed) Sensory Research: Multimodal Perspectives. Hillsdale, NJ: Erlbaum Press, pp. 299–306.

    Google Scholar 

  • Scharf B, Magnan J, Collet L, Ulmer E, Chays A (1994) On the role of the olivocochlear bundle in hearing: a case study. Hear Res 75:11–26.

    PubMed  CAS  Google Scholar 

  • Schwartz IR (1992) The superior olivary complex and lateral lemniscal nuclei. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 117–167.

    Google Scholar 

  • Schwarz DWF, Schwarz IE, Hu K, Vincent SR (1988) Retrograde transport of [3H]-GABA by lateral olivocochlear neurons in the rat. Hear Res 32:97–102.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984a) The relation between the endocochlear potential and sponta-neous activity in auditory nerve fibres of the cat. J Physiol (Lond) 347:685–696.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984b) The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning curves in cats. Hear Res 14:305–314.

    PubMed  CAS  Google Scholar 

  • Sewell WF, Starr PA (1991) Effects of calcitonin gene-related peptide and efferent nerve stimulation on afferent transmission in the lateral line organ. J Neurophysiol 65:1158–1169.

    PubMed  CAS  Google Scholar 

  • Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivo-cochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182.

    PubMed  CAS  Google Scholar 

  • Smith CA (1961) Innervation pattern of the cochlea. Ann Oto Rhinol Laryngol 70:504–527.

    Google Scholar 

  • Sohmer H (1966) A comparison of the efferent effects of the homolateral and contralateral olivo-cochlear bundles. Acta Otolaryngol 62:74–87.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1966) The organization of the cochlear receptor. Adv Otorhinolaryngol 13:1–227.

    CAS  Google Scholar 

  • Spoendlin H (1970) Auditory, vestibular, olfactory and gustatory organs. In: Bischoff A (ed) Ultrastructure of the Peripheral Nervous System and Sense Organs. St. Louis: C.V. Mosby, pp. 173–338.

    Google Scholar 

  • Sridhar TS, Brown MC, Sewell WF (1995) Molecular mechanisms involved in olivocochlear efferent slow effects. Assoc Res Otolaryngol Abstr 18:172.

    Google Scholar 

  • Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of olivocochlear stimulation on cochlear potentials in the guinea pig. J Neurosci I5:3667–3678.

    Google Scholar 

  • Stelmachowicz PG, Gorga MP (1983) Investigation of the frequency specificity of acoustic reflex facilitation. Audiology 22:128–135.

    PubMed  CAS  Google Scholar 

  • Strickland EA, Viemeister NF (1995) An attempt to find psychophysical evidence for efferent action in humans. Assoc Res Otolaryngol Abstr 18:173.

    Google Scholar 

  • Suga N, Jen PH-S (1975) Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol 62:277–311.

    PubMed  CAS  Google Scholar 

  • Takeyama M, Kusakari J, Nishikawa N, Wada T (1992) The effect of crossed olivo-cochlear bundle stimulation on acoustic trauma. Acta Otolaryngol (Stockh) 112:205–209.

    CAS  Google Scholar 

  • Teas DC, Konishi T, Nielsen DW (1972) Electrophysiological studies on the spatial distribution of the crossed olivocochlear bundle along the guinea pig cochlea. J Acoust Soc Am 51:1256–1264.

    PubMed  CAS  Google Scholar 

  • Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303:267–285.

    PubMed  CAS  Google Scholar 

  • Trahiotis C, Elliott DN (1970) Behavioral investigation of some possible effects of sectioning the crossed olivocochlear bundle. J Acoust Soc Am 47:592–596.

    PubMed  CAS  Google Scholar 

  • van Dijk P, Wit HP (1990) Amplitude and frequency fluctuations of spontaneous otoacoustic emissions. J Acoust Soc Am 8:1779–1793.

    Google Scholar 

  • Vetter DE, Adams JC, Mugnaini E (1991) Chemically distinct rat olivocochlear neurons. Synapse 7:21–43.

    PubMed  CAS  Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–182.

    PubMed  CAS  Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 410–448.

    Google Scholar 

  • Warr WB, Beck JE (1995) A longitudinal efferent innervation of the inner hair cell region may originate from “shell neurons” surrounding the lateral superior olive in the rat. Assoc Res Otolaryngol Abstr 18:87.

    Google Scholar 

  • Warr WB, Guinan JJ Jr (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173:152–155.

    PubMed  CAS  Google Scholar 

  • Warr WB, White JS, Nyffeler MJ (1982) Olivocochlear neurons: quantitative comparison of the lateral and medial efferent systems in adult and newborn cats. Soc Neurosci Abstr 8:346.

    Google Scholar 

  • Warr WB, Guinan JJ Jr, White JS (1986) Organization of the efferent fibers: the lateral and medial olivocochlear systems. In: Altschuler RA, Hoffman DW

    Google Scholar 

  • Bobbin RP (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 333–348.

    Google Scholar 

  • Warren EH III, Liberman MC (1989a) Effects of contralateral sound on auditory-nerve responses. I. Contributions of cochlear efferents. Hear Res 37:89–104.

    PubMed  Google Scholar 

  • Warren EH III, Liberman MC (1989b) Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables. Hear Res 37:105–122.

    PubMed  Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK (1991) Slow variation in the amplitude of acoustic distortion at f2-f1 in awake rabbits. Hear Res 51:293–300.

    PubMed  CAS  Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK, McCoy MJ (1995) Otoacoustic emission: animal models and clinical observations. In: Van De Water T, Popper AN, Fay RR (eds) Clinical Aspects of Hearing. New York: Springer-Verlag, pp. 199–257.

    Google Scholar 

  • Wiederhold ML (1970) Variations in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory-nerve-fiber responses to tone bursts. J Acoust Soc Am 48:966–977.

    PubMed  CAS  Google Scholar 

  • Wiederhold ML, Kiang NYS (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965.

    PubMed  CAS  Google Scholar 

  • Wiederhold ML, Peake WT (1966) Efferent inhibition of auditory nerve responses: dependence on acoustic stimulus parameters. J Acoust Soc Am 40:1427–1430.

    PubMed  CAS  Google Scholar 

  • Williams EA, Brookes GB, Prasher DK (1994) Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effect in comparison with control subjects. Acta Otolaryngol 114:121–129.

    PubMed  CAS  Google Scholar 

  • Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002–1021.

    PubMed  CAS  Google Scholar 

  • Winslow RL, Sachs MB (1988) Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of crossed olivocochlear bundle. Hear Res 35:165–190.

    PubMed  CAS  Google Scholar 

  • Young ED, Barta PE (1986) Rate responses of auditory nerve fibers to tones in noise near masked threshold. J Acoust Soc Am 79:426–442.

    PubMed  CAS  Google Scholar 

  • Zeng FG, Lehmann KM, Soli SD, Linthicum FH (1994) Effects of vestibular neurectomy on intensity discrimination and speech perception in noise. J Acoust Soc Am 95:2993–2994.

    Google Scholar 

  • Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guinan, J.J. (1996). Physiology of Olivocochlear Efferents. In: Dallos, P., Popper, A.N., Fay, R.R. (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0757-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0757-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6891-8

  • Online ISBN: 978-1-4612-0757-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics