Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 13))

Abstract

The middle-ear system of all vertebrates improves the efficiency of sound transmission from the surrounding medium, be it air, water, or ground, to the inner ear. The process by which this is achieved is similar across both mammalian and nonmammalian forms. The specific structures and mechanisms that have evolved to accomplish this task, however, vary considerably from species to species. In this chapter we hope to develop an appreciation of how the middle-ear system is organized, how it operates, and how it contributes to hearing in reptiles and birds. The chapter begins by examining how the middle ear is studied and how it functions. A brief exposition of middle-ear evolution is followed by a consideration of structure and function in the reptilian and avian middle ears. The contribution of middle-ear muscle contraction as well as middle-ear development is then presented. Finally, the chapter concludes with a discussion of the contribution of the middle ear to the overall process of hearing in these species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allin ER, Hopson JA (1992) Evolution of the auditory system in synapsida (“mammal-like reptiles” and primitive mammals) as seen in the fossil record. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 587–614.

    Chapter  Google Scholar 

  • Bolt JR, Lombard RE (1985) Evolution of the amphibian tympanic ear and the origin of frogs. Biol J Linnean Soc 24:83–99.

    Article  Google Scholar 

  • Bolt JR, Lombard RE (1992) Nature and quality of the fossil evidence for otic evolution in early tetrapods. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 377–403.

    Chapter  Google Scholar 

  • Borg E, Counter SA, Rydqvist B (1979) Contraction properties and functional morphology of the avian stapedius muscle. Acta Otolaryngol 88:20–26.

    Article  PubMed  CAS  Google Scholar 

  • Borg E, Counter SA, Lännergren J (1982) Analysis of the avian middle ear muscle contraction by strain gauge and volume and impedance change measures. Comp Biochem Physiol 71A:619–621.

    Article  Google Scholar 

  • Breuer J (1908) Über das Gehrögan der Vögel. Berlin: Stzber Wiener Akad 116:249–297.

    Google Scholar 

  • Carroll RL (1987) Vertebrate Paleontology and Evolution. New York: Freeman and Co.

    Google Scholar 

  • Chin K, Kurian R, Saunders JC (1997) The maturation of tympanic membrane layers and collagen in the embryonic and post-hatch chick. J Morphol 233:257–266.

    Article  PubMed  CAS  Google Scholar 

  • Clack JA (1992) The stapes of Acanthostega gunnari and the role of the stapes in early tetrapods. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 405–420.

    Chapter  Google Scholar 

  • Cohen YE, Hernandez HN, Saunders JC (1992) Middle-ear development. II: Structural development of the chick middle ear. J Morphol 212:257–267.

    Article  PubMed  CAS  Google Scholar 

  • Cohen YE, Rubin DM, Saunders JC (1992) Middle-ear development. I: Extra-stapedius response in the neonatal chick. Hear Res 58:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Cohen YE, Doan DE, Rubin DM, Saunders JC (1993) Middle-ear development. V: Development of umbo sensitivity in the gerbil. Am J Otolaryngol 14:191–198.

    Article  PubMed  CAS  Google Scholar 

  • Coles RB, Lewis DB, Hill KG, Hutchings ME, Grower DM (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). II. Cochlear physiology. J Exp Biol 86:153–170.

    Google Scholar 

  • Counter SA, Borg E (1979) Physiological activation of the stapedius muscle in Gallus gallos. Acta Otolaryngol 88:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Counter SA, Borg E (1982) The avian stapedius muscle. Influence on auditory sensitivity and sound transmission. Acta Otolaryngol 94:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Counter SA, Borg E, Lännergren J (1981) Basic contraction properties of the avian stapedius muscle. Acta Physiol Scand 111:105–108.

    Article  PubMed  CAS  Google Scholar 

  • Counter SA, Hellstrand E, Borg E (1987) A histochemical characterization of muscle fiber types in the avian m. stapedius. Comp Biochem Physiol 86A(1): 185–187.

    Article  Google Scholar 

  • Doan DE, Cohen YE, Saunders JC (1994) Middle-ear development: IV. Umbo motion in neonatal mice. J Comp Physiol A 174:103–110.

    Article  PubMed  CAS  Google Scholar 

  • Durrant JD, Lovrinic JH (1995) Basis of Hearing Science. Williams and Wilkins: Philadelphia, p. 333.

    Google Scholar 

  • Eatock RA, Manley GA, Pawson L (1981) Auditory nerve fiber activity in the tokay gecko: I. Implications for cochlear processing. J Comp Physiol A 142:203–218.

    Article  Google Scholar 

  • Evans HE (1979) Organa sensoria. In: Baumel JJ (ed) Nomina Anatomica Avium. New York: Academic Press, pp. 505–526.

    Google Scholar 

  • Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Anat Embryo Cell Biol 55:1–70.

    Google Scholar 

  • Frey-Zumpfe H (1953) Befunde im Mittelohr der Vögel. Wiss Martin-Luther-Univ Halle Wittenb 2:445–461.

    Google Scholar 

  • Fritzsch B (1992) The water-to-land transition: evolution of the tetrapod basilar papilla, middle ear and auditory nuclei. In: Webster DB, Fay RR, Popper AN (cds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 351–375.

    Chapter  Google Scholar 

  • Gans C, Weyer EG (1972) The ear and hearing in Amphisbaenia (Reptilia). J Exp Zool 179:17–34.

    Article  Google Scholar 

  • Gaudin EP (1968) On the middle ear of birds. Acta Otolaryngol 65:316–326.

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1989) Wonderful Life: The he Burgess Shale and the Nature of History. New York: Norton.

    Google Scholar 

  • Golubeva TB (1972) The reflex activity of the tympanal muscle in the owl Asia otus. Zhurn Evol Biol Fisiol 8:173–181.

    CAS  Google Scholar 

  • Gummer AW, Smolders JWT, Klinke R (1989a) Mechanics of a single-ossicle ear: I. The extra-stapedius of the pigeon. Hear Res 39:1–14.

    Article  CAS  Google Scholar 

  • Gummer AW, Smolders JWT, Klinke R (1989b) Mechanics of a single-ossicle ear. II. The columella footplate of the pigeon. Hear Res 39:15–26.

    Article  CAS  Google Scholar 

  • Grassi S, Magni F, Ottaviani F (1988) Mechanisms controlling vocalization-evoked stapedius muscle activity in chickens (Gallus gallos). J Comp Physiol A 162:525–532.

    Article  Google Scholar 

  • Helmholtz HLF (1873) The mechanism of the ossicles of the ear and membrana tympani. Buck AH, Smith N (trans) New York: William Wood and Co.

    Google Scholar 

  • Henson GW Jr. (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology. V/I: Auditory System. Berlin: Springer-Verlag, pp. 40–110.

    Google Scholar 

  • Hetherington TE (1992) The effects of body size on the evolution of the amphibian ear. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 421–437.

    Chapter  Google Scholar 

  • Hill KG, Lewis DB, Hutchings ME, Coles RB (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). I. Acoustic properties of the auditory system. J Exp Biol 86:135–151.

    Google Scholar 

  • Hotton N (1959) The pelycosaur tympanum and early evolution of the middle ear. Evolution 13:99–121.

    Article  Google Scholar 

  • Iljitschew WD, Izwekowa LM (1961) Some peculiarities of the function of the auditory analyzer in birds. Zool Zh 40:1704–1714.

    Google Scholar 

  • Jaskol] TF, Maderson PFA (1978) A histological study of the development of the avian middle-ear and tympanum. Anat Rec 190:177–200.

    Article  Google Scholar 

  • Joseph MP, Guinan JJ Jr, Fullerton BC, Norris BE, Kiang NYS (1985) Number and distribution of stapedius motorneurons in cats. J Comp Neurol 232:43–54.

    Article  PubMed  CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-averaged holography. J Acoust Soc Am 51:1904–1920.

    Article  PubMed  CAS  Google Scholar 

  • Kinsler LE, Frey AR (1962) Fundamentals of Acoustics. 2nd ed. New York: John Wiley and Sons.

    Google Scholar 

  • Kohllöffel LUE (1984) Notes on the comparative mechanics of hearing. I. A shock-proof ear. Hear Res 13:73–76.

    Article  PubMed  Google Scholar 

  • Krause G (1901) Die Columella der Vögel (Columella Auris Aviur). Ihr Bau and dessen Einfluss auf die Finhrigkeit. Berlin, Friedlnder.

    Google Scholar 

  • Kühne R, Lewis B (1985) External and middle ears. In: King AS, McCelland J (eds) Form and Function in Birds. New York: Academic Press, pp. 227–271.

    Google Scholar 

  • Lombard RE, Bolt JR (1979) Evolution of the tetrapod ear: an analysis and rein-terpretation. Biol J Linn Soc 11:19–76.

    Article  Google Scholar 

  • Lombard RE, Bolt JR (1988) Evolution of the stapes in Paleozoic tetrapods. In: Fritzsch B, Ryan M, Wikzynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 37–67.

    Google Scholar 

  • Lynch TJ III, Nedzelnitsky V, Peake WT (1982) Input impedance of the cochlea in cat. J Acoust Soc Am 72:108–130.

    Article  PubMed  Google Scholar 

  • Manley GA (1972a) Frequency response of the ear of the tokay gecko. J Exp Zool 181:159–168.

    Article  CAS  Google Scholar 

  • Manley GA (1972b) The middle ear of the tokay gecko. J Comp Physiol 81:239–250.

    Article  Google Scholar 

  • Manley GA (1972c) Frequency response of the ear of the tokay gecko. J Exp Zool 181:159–168.

    Article  CAS  Google Scholar 

  • Manley GA (1974) A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution 26:608–621.

    Article  Google Scholar 

  • Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. New York: Springer-Verlag.

    Book  Google Scholar 

  • Manley GA, Gleich 0 (1992) Evolution and specialization of function in the avian auditory periphery. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 405–420.

    Google Scholar 

  • Manley GA, Yates GK, Köppl C (1988) Auditory peripheral tuning: Evidence for a simple resonance phenomenon in the lizard Tiliqua. Hear Res 33:181–190.

    Article  PubMed  CAS  Google Scholar 

  • Mills R (1994) Applied comparative anatomy of the avian middle ear. J Roy Soc Med 87:222–223.

    Google Scholar 

  • Moffat AJM, Capranica RR (1978) Middle ear sensitivity in anurans and reptiles measures by light scattering spectroscopy. J Comp Physiol 127:97–107.

    Article  Google Scholar 

  • Muller AR (1963) Transfer function of the middle ear. J Acoust Soc Am 35: 1526–1534.

    Article  Google Scholar 

  • Moller AR (1974a) Function of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol V/1: Auditory System. Berlin: Springer-Verlag, pp. 491–517.

    Google Scholar 

  • Moller AR (1974b) The acoustic middle ear muscle reflex. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol V/1: Auditory System. Berlin, Springer-Verlag, pp. 519–548.

    Google Scholar 

  • Müller HJ (1960) Die Morphologie und Entwicklung des Craniums von Rea americana Linné. Z Wiss Zool 165:221–319.

    Google Scholar 

  • Mundie JR (1963) The impedance of the ear—a variable quantity. In: Fletcher JL (ed) Middle Ear Function Seminar. US Army Medical Research Laboratory Report, Dept. 567, Wright-Patterson AFB, Ohio, pp. 63–85.

    Google Scholar 

  • Norberg RA (1978) Skull assymetry, ear structure and function, and auditory localization in Tengmalm’s owl, Aegolius funereus (Linn). Phil Trans R Soc 282B:325–410.

    Google Scholar 

  • Oeckinghaus H, Schwartzkopff J (1983) Electrical and acoustical activation of the middle ear muscle in a songbird. J Comp Physiol 150:61–67.

    Article  Google Scholar 

  • Parker SP (1982) Synopsis and Classification of Living Organisms. Vol. 2. McGraw Hill: New York.

    Google Scholar 

  • Patterson WC (1966) Hearing in the turtle. J Aud Res 6:453–464.

    Google Scholar 

  • Pohlman AG (1921) The position and functional interpretation of the elastic ligaments in the middle-ear of Gallus. J Morphol 35:229–262.

    Article  Google Scholar 

  • Puria S, Allen JB (1991) A parametric study of cochlear input impedance. J Acoust Soc Am 89:287–309.

    Article  PubMed  CAS  Google Scholar 

  • Relkin EM (1988) Introduction to the analysis of middle-ear function. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the Ear. New York: Raven Press, pp. 103–123.

    Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbethiere. Vol II. Das Gehörogan der Reptilien, der Vögel und der Säugethiere. Stockholm: Samson and Wallin.

    Google Scholar 

  • Rosowski JJ (1994) Outer and middle ears. In: Fay RR, Popper AN (eds) Comparative Hearing: Mammals. New York: Springer-Verlag, pp. 172–247.

    Chapter  Google Scholar 

  • Rosowski JJ (1996) Models of external-and middle-ear function. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (1996) Auditory Computation. New York: Springer-Verlag, pp. 15–61.

    Chapter  Google Scholar 

  • Rosowski JJ, Saunders JC (1980) Sound transmission through the avian interaural pathway. J Comp Physiol 136:183–190.

    Article  Google Scholar 

  • Rosowski JJ, Ketten DR, Peake WT (1988) Allometric correlations of middle-ear structure and function in one species—the alligator lizard. Abs Assoc Res Otolaryngol 12:55.

    Google Scholar 

  • Rosowski JJ, Peake WT, Lynch TJ III (1984) Acoustic input-admittance of the alligator-lizard ear. Nonlinear features. Hear Res 16:205–223.

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ, Peake WT, Lynch TJ III, Weiss TF (1985) A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Micromechanical stage. Hear Res 20:139–155.

    Article  PubMed  CAS  Google Scholar 

  • Saito N (1980) Structure and function of the avian ear. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 241–260.

    Chapter  Google Scholar 

  • Saunders JC (1985) Auditory structure and function in the bird middle ear: an evaluation by SEM and capacitive probe. Hear Res 18:253–268.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Henry WJ (1988) The peripheral auditory system in birds: structural and functional contributions to auditory perception. In: Dooling RJ, Hulse WM (eds) Contributions to Auditory Perception in Animals. Collingwood, NJ: Erlbaum, pp. 31–62.

    Google Scholar 

  • Saunders JC, Johnstone BM (1972) A comparative analysis of middle-ear function in non-mammalian vertebrates. Acta Otolaryngol 73:353–361.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Summers RM (1982) Auditory structure and function in the mouse middle ear: an evaluation by SEM and capacitive probe. J Comp Physiol 146:517–525.

    Article  Google Scholar 

  • Saunders JC, Coles RB, Gates GR (1973) The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. Brain Res 63:59–74.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Rintelman WE Bock GR (1979) Frequency selectivity in bird and man: a comparison among critical ratios, critical bands, and psychophysical tuning curves. Hear Res 1:303–323.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Kaltenbach JA, Relkin EM (1983) The structural and functional development of the outer and middle ear. In: Romand R (cd) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 3–25.

    Google Scholar 

  • Saunders JC, Relkin EM, Rosowski JJ, Bahl C (1986) Changes in middle-ear input admittance during postnatal auditory development in chicks. Hear Res 24:277–235.

    Article  Google Scholar 

  • Saunders JC, Doan DE, Cohen YE (1993) The contribution of middle-ear sound conduction to auditory development. Comp Biochem Physiol 106A:7–13.

    Article  Google Scholar 

  • Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system in Actinopterygian fish. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 295–322.

    Chapter  Google Scholar 

  • Schmalhausen II (1968) The Origin of Terrestrial Vertebrates. New York: Academic.

    Google Scholar 

  • Schwartzkopff J (1952) Untersuchungen über die Arbeitsweise des Mittelohres und das Richtungshren der Singvölgel unter Verwendung von Cochlea-Potentialen. Z vergl Physiol 34:46–68.

    Article  Google Scholar 

  • Schwartzkopff J (1957) Die Görssenverhaltnisse von Trommelfell, ColumellaFussplatte und Schnecke hei Vögeln verschiedenen Gewichts. Z Morph Ökologie Tierre 45:365–378.

    Article  Google Scholar 

  • Smith G (1904) The middle ear and columella of birds. Quart J Micros Sci 48:11–22.

    Google Scholar 

  • Starck D (1978) Vergleichende Anatomie der Wirbeltiere, Band 1. Berlin: Springer-Verlag.

    Google Scholar 

  • Stellbogen E (1930) Über das äussere und mittlere Ohr des Waldkauzes (Syrnium aluco L.) Z Morph kol Tiere 19:686–731.

    Article  Google Scholar 

  • Tonndorf J, Khanna SM (1970) The role of the tympanic membrane in middle-ear transmission. Ann Otol Rhino! Laryngol 79:743–753.

    CAS  Google Scholar 

  • Tumarkin A (1968) Evolution of the auditory conducting apparatus in terrestrial vertebrates. In: De Reuck AVS, Knight J (eds) Hearing Mechanisms in Vertebrates. Ciba Foundation Symposium. Boston: Little Brown, pp. 18–36.

    Google Scholar 

  • van Bergeijk (1966) Evolution of the sense of hearing in vertebrates. Am Zool 6:371–377.

    PubMed  Google Scholar 

  • van Bergeijk (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. Berlin: Academic Press. pp. 1–49.

    Google Scholar 

  • Versluys J Jr (1898) Die mittlere und äussere Ohrsphäre der Lacertilia und Rhynchocephalia. Zoo Jharb Abt Anat 12:161–406.

    Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Wada Y (1924) Beiträge zur vergleichenden Physiologie des Gehörorganes. Pflugers Arch ges Physiol 202:46–69.

    Article  Google Scholar 

  • Watson DMS (1953) The evolution of the mammalian ear. Evolution 7:159–177.

    Article  Google Scholar 

  • Webster DB, Fay RR, Popper AN (1992) The Evolutionary Biology of Hearing. New York: Springer-Verlag.

    Book  Google Scholar 

  • Werner YH (1983) Temperature effects on cochlear function in reptiles: a personal review incorporating data. In: Fay RF, Gourevitch G (eds) Hearing and Other Senses: Presentations in Honor of E. G. Weyer. Groton, CT: Amphora Press, pp. 149–174.

    Google Scholar 

  • Werner YL, Montgomery LG, Safford SD, Igic P, Saunders JC (1998) How changes in body size relate to middle ear structure and function and auditory sensitivity in Gekkonoid lizards. J Exp Biol 201:487–502.

    PubMed  CAS  Google Scholar 

  • Weyer EG (1973) The function of the middle ear in lizards: divergent types. J Exp Zool 184:97–126.

    Article  Google Scholar 

  • Weyer EG (1974) Evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology. V/I: Auditory System. Berlin: Springer-Verlag, pp. 423–454.

    Google Scholar 

  • Weyer EG (1978) The Reptile Ear: Its Structure and Function. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Weyer EG, Gans C (1973) The ear in Amphisbaenia (Reptilia): further anatomical considerations. J Zool Lond 171:189–206.

    Google Scholar 

  • Weyer EG, Lawrence M (1954) Physiological Acoustics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Weyer EG, Vernon JA (1956) Sound transmission in the turtle’s car. Proc Natl Acad Sci USA 42:292–299.

    Article  Google Scholar 

  • Weyer EG, Vernon JA (1957) Auditory responses in the spectacled caiman. J Cell Comp Physiol 50:333–339.

    Article  Google Scholar 

  • Weyer EG, Werner YL (1970) The function of the middle ear in lizards: Crotaphytus collaris. J Exp Zool 175:327–342.

    Article  Google Scholar 

  • Wilson JP, Smolders JWT, Klinke R (1985) Mechanics of the basilar membrane in Caiman crocodilus. Hear Res 18:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Wong CJH, To EC, Schwarz DWF (1992) Location of motoneurons innervating the middle ear muscle of the chicken (Gallus domesticus). Hear Res 61:31–34.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki J (1962) Analysis of middle-ear function. Part I: Input impedance. J Acoust Soc Am 34:1514–1523.

    Article  Google Scholar 

  • Zwislocki J (1975) The role of the external and middle ear in sound transmission. In: Tower DB (ed) The Nervous System, Vol. 3: Human Communication and Its Disorders. New York: Raven press, pp. 445–455.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saunders, J.C., Duncan, R.K., Doan, D.E., Werner, Y.L. (2000). The Middle Ear of Reptiles and Birds. In: Dooling, R.J., Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Birds and Reptiles. Springer Handbook of Auditory Research, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1182-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1182-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7036-2

  • Online ISBN: 978-1-4612-1182-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics