Skip to main content

The Water-to-Land Transition: Evolution of the Tetrapod Basilar Papilla, Middle Ear, and Auditory Nuclei

  • Chapter
The Evolutionary Biology of Hearing

Abstract

The evolution of the auditory system of tetrapods has been the topic of numerous investigations on the middle ear (e.g., Reichert 1837; Gaupp 1898, 1913; de Burlet 1934; Thomson 1966; Henson 1974; Lombard and Bolt 1988), the inner ear (e.g., Retzius 1881, 1884; de Burlet 1934; Werner 1960; Baird 1974; Lewis, Leverenz, and Bialek 1985), and the auditory pathways in the central nervous system (e.g., Larsell 1934; Ariens-Kappers, Huber, and Crosby 1936; Northcutt 1980). The consensus reached by many of these studies was that the water-to-land transition apparently coincided with the coevolution of a tympanic middle ear, a basilar papilla, and a periotic labyrinth in the inner ear, as well as neural pathways devoted to the processing of airborn sound in tetrapods (Fig. 18.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariens-Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. New York: Hafner Publishing.

    Google Scholar 

  • Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol. V/l. Berlin: Springer, pp. 159–212.

    Google Scholar 

  • Blaxter JHS, Denton EJ, Gray JAB (1981) Acoustico-lateralis system in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer Verlag, pp. 39–59.

    Google Scholar 

  • Bjerring HC (1985) Facts and thoughts on piscine phylogeny. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary Biology of Primitive Fishes. New York: Plenum Press, pp. 31–57.

    Google Scholar 

  • Campbell KSW, Barwick RE (1986) Paleozoic lung-fishes-a review. J Morphol Suppl 1:93–131.

    Article  Google Scholar 

  • Carroll RL (1988) Vertebrate Palaeontology and Evolution. New York: Freeman and Co.

    Google Scholar 

  • Clack JA (1989) Discovery of the earliest-known tetrapod stapes. Nature 342:425–427.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT (1981) Audition in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer Verlag, pp. 81–105.

    Google Scholar 

  • de Burlet HM (1934) Vergleichende Anatomie des stato-akustischen Organs, a) Die innere Ohrsphäre; b) Die mittlere Ohrsphäre. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der Vergleichenden Anatomie der Wirbeltiere, Vol. 2. Berlin: Urban and Schwarzenberg, pp. 1293–1432.

    Google Scholar 

  • Eggermont JJ (1988) Mechanisms of sound localization in anurans. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 561–586.

    Google Scholar 

  • Forey PL (1986) Relationships of lungfishes, J Morphol Suppl 1:75–91.

    Article  Google Scholar 

  • Forey PL (1988) Golden jubilee for the coelacanth Latimeria chalumnae. Nature 336:727–732.

    Article  Google Scholar 

  • Fricke H, Reinicke O, Hofer H, Nachtigall W (1987) Locomotion of the coelacanth Latimeria chalumnae in its natural environment. Nature 329:331–333.

    Article  Google Scholar 

  • Fritzsch B (1987) The inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154.

    Article  Google Scholar 

  • Fritzsch B (1988) Phylogenetic and ontogenetic origin of the dorsolateral auditory nucleus of anurans. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 561–586.

    Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gymno-phione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphology 108:210–217.

    Article  Google Scholar 

  • Fritzsch B (1989) Diversity and regression in the amphibian lateral line system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer Verlag, pp. 99–115.

    Chapter  Google Scholar 

  • Fritzsch B (1990a) The evolution of metamorphosis in amphibians. J Neurobiol 21:1011–1021.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B (1990b) Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation. Develop Brain Res 51:113–122.

    Article  CAS  Google Scholar 

  • Fritzsch B, Niemann U, Bleckmann H (1990) A discrete projection of the sacculus and lagena to a distinct brain stem nucleus in a catfish. Neurosci Lett 111:7–11.

    Article  PubMed  CAS  Google Scholar 

  • Gaupp E (1898) Ontogenese und Phylogenese des schalleitenden Apparates bei den Wirbeltieren. Erg Anat Entwicklungsgesch 8:990–1149.

    Google Scholar 

  • Gaupp E (1913) Die Reichertsche Theorie (Hammer-, Ambos und Kieferfrage). Arch Anat Anat Abt Suppl 1–416.

    Google Scholar 

  • Goodrich ES (1930) Studies on the structure and development of vertebrates. London: MacMillan.

    Google Scholar 

  • Greenwood PH (1963) The swimbladder in African notopteridae (Pisces) and its bearing on the taxonomy of the family. Bull Br Mus Nat Hist (Zool) 11:377–412.

    Google Scholar 

  • Gutknecht D, Fritzsch B (1990) Lithium induces multiple ear vesicles in Xenopus laevis embryos. Naturwissenschaften 77:235–237.

    Article  PubMed  CAS  Google Scholar 

  • Henson OW (1974) Comparative anatomy of the middle ear. In: Keidel WD, NeffWD (eds) Handbook of Sensory Physiology. V/l: Auditory System. Berlin: Springer, pp. 40–110.

    Google Scholar 

  • Hetherington TE (1988) Metamorphic changes in the middle ear. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 339–357.

    Google Scholar 

  • Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Jacoby J, Rubinson K (1983) The acoustic and lateral line nuclei are distinct in the premetamorphic frog. Rana catesbeiana. J Comp Neurol 216:152–161.

    Article  PubMed  CAS  Google Scholar 

  • Jarvik E (1980) Basic structure and evolution of vertebrates. Vol. 1. London: Academic Press.

    Google Scholar 

  • Jaslow AP, Hetherington TE, Lombard RE (1988) Structure and function of the amphibian middle ear. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 69–91.

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 84–130.

    Google Scholar 

  • Larsell O (1934) The differentiation of the peripheral and central acoustic apparatus in the frog. J Comp Neurol 60:473–527.

    Article  Google Scholar 

  • Larsell O (1967) The Comparative Anatomy and Histology of the Cerebellum from Myxinoids through Birds. Jansen J (ed) Minneapolis: University of Minnesota Press, pp. 163–178.

    Google Scholar 

  • Lewis ER, Leverenz EL, Bialek W (1985) The vertebrate inner ear. Boca Raton: CRC Press, pp. 256.

    Google Scholar 

  • Lewis ER, Lombard RE (1988) The amphibian inner ear. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 93–123.

    Google Scholar 

  • Liem KF (1989) Respiratory gas bladders in teleosts: Functional conservatism and morphological diversity. Amer Zool 29:333–352.

    Google Scholar 

  • Lombard RE (1977) Comparative morphology of the inner ear in salamanders (Caudata: Amphibia). Contrib Vert Evol 2:1–143.

    Google Scholar 

  • Lombard RE, Bolt JR (1979) Evolution of the tetrapod ear: an analysis and reinterpretation. Biol J Linn Soc 11:19–76.

    Article  Google Scholar 

  • Lombard RE (1980) The structure of the amphibian auditory periphery: A unique experiment in terrestrial hearing. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer Verlag, pp. 121–138.

    Google Scholar 

  • Lombard RE, Bolt JR (1988) Evolution of the stapes in paleozoic tetrapods. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 37–67.

    Google Scholar 

  • Luther A (1924) Entwicklungsmechanische Untersuchungen am Labyrinth einiger Anuren. Soc Sc Fenn Comment Biol 2:1–48.

    Google Scholar 

  • McCormick CA, Braford MR (1988) Central connections of the octavo-lateralis system: evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animal. New York: Springer, pp. 750–767.

    Google Scholar 

  • Millot J, Anthony J (1965) Anatomie de Latimeria chalumnae. Tome II. Paris: CNRS.

    Google Scholar 

  • Moller AR (1974) Function of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, V/l: Auditory System. Berlin: Springer, pp. 492–517.

    Google Scholar 

  • Noden DM (1987) Interactions between cephalic neural crest and mesodermal populations. In: Maderson PFA (ed) Developmental and Evolutionary Aspects of the Neural Crest. New York: Wiley, pp. 89–120.

    Google Scholar 

  • Northcutt RG (1980) Central auditory pathways in anamniotic vertebrates. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer Verlag, pp. 79–118.

    Google Scholar 

  • Northcutt RG (1986a) Electroreception in nonteleost bony fishes. In: Bullock TH, Heiligenberg W (eds) Electroreception. New York: Wiley and Sons, pp. 257–287.

    Google Scholar 

  • Northcutt RG (1986b) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J Morphol Suppl 1:277–297.

    Article  Google Scholar 

  • Popper AN, Rogers PH, Saidel WM, Cox M (1988) Role of the fish ear in sound processing. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 687–710.

    Google Scholar 

  • Reichert C (1847) Ãœber die Visceralbögen der Wirbeltiere im allgemeinen und deren Metamorphose bei den Vögeln und Säugetieren. Arch Anat Physiol 120–222.

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbeltiere: I. Das Gehörorgan der Fische und Amphibien. Stockholm: Samson and Wallin, pp. 286.

    Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbeltiere: II. Das Gehörorgan der Amnioten. Stockholm: Samson und Wallin, pp. 345.

    Google Scholar 

  • Rogers PH, Cox M (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 131–149.

    Google Scholar 

  • Romer AS (1937) The braincase of the carboniferous crossopterygian Megalichthyes nitidus. Bull Mus Comp Zool 82:1–73.

    Google Scholar 

  • Sarasin P, Sarasin F (1892) Ãœber das Gehörorgan der Caeciliiden. Anat Anz 7:812–815.

    Google Scholar 

  • Schultze H-P (1986) Dipnoans as sarcopterygians. J Morphol Suppl 1:39–74.

    Article  Google Scholar 

  • Thomson KS (1966) The evolution of the tetrapod middle ear in the rhipidistian-amphibian transition. Amer Zool 6:379–397.

    CAS  Google Scholar 

  • Toerien MJ (1963) Experimental studies on the origin of the cartilage of the auditory capsule and columella in Ambystoma. J Embryol Exp Morphol 11:459–473.

    PubMed  CAS  Google Scholar 

  • van Bergeijk WA (1966) Evolution of the sense of hearing in vertebrates. Am Zool 6:371–377.

    PubMed  Google Scholar 

  • van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • Van de Water TR, Noden DM, Maderson PFA (1986) Embryology of the ear: Outer, middle, and inner ear. In: Alberti PW, Ruben RJ (eds) Otological Medicine and Surgery. New York: Churchill-Livingstone.

    Google Scholar 

  • Wahnschaffe U, Bartsch U, Fritzsch B (1987) Metamorphic changes within the lateral-line system of Anura. Anatomy and Embryology 175:431–442.

    Article  PubMed  CAS  Google Scholar 

  • Werner G (1960) Das Labyrinth der Wirbeltiere. Jena: Fischer Verlag, pp. 309.

    Google Scholar 

  • Wever EG (1974) The evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, V/l: Auditory System. Berlin: Springer, pp. 423–454.

    Google Scholar 

  • Wever EG (1985) The Amphibian Ear. New Jersey: Princeton University Press, p. 405.

    Google Scholar 

  • White JS, Baird IL (1982) Comparative morphological features of the caecilian inner ear with comments on the evolution of amphibian auditory structures. Scann Electron Micr 3:1301–1312.

    CAS  Google Scholar 

  • Will U, Fritzsch B (1988) The octavus nerve of amphibians: Patterns of afferents and efferents. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 159–183.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Fritzsch, B. (1992). The Water-to-Land Transition: Evolution of the Tetrapod Basilar Papilla, Middle Ear, and Auditory Nuclei. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics