Skip to main content

Micromechanical Considerations in Shock Compression of Solids

  • Chapter
High-Pressure Shock Compression of Solids

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

The application of what is commonly known as solid continuum mechanics has been very successful in descriptions of the shock-compression process. It has given us the jump conditions, useful concepts of average quantities such as density and specific internal energy (for example), and constitutive descriptions (including equations of state) involving these average quantities and their time rates of change. Even as we profitably use these ideas, we always have in mind micromechanical concepts such as the crystal lattice, the electronic structure of the crystallographic system, and lattice defects which give rise to important physical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. D.C. Wallace, Computer Simulation of Non-Equilibrium Processes, in Shock Waves in Condensed Matter (edited by Y.M. Gupta), Plenum, New York, 1986, pp.37–49

    Chapter  Google Scholar 

  2. J.J. Gilman, Micromechanics of Flow in Solids, McGraw-Hill, New York, 1969

    Google Scholar 

  3. J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York, 1968

    Google Scholar 

  4. G.I. Taylor, The Mechanism of Plastic Deformation in Crystals, Proc. Roy. Soc. A145, 362–415 (1934)

    ADS  Google Scholar 

  5. M. Polanyi, Über eine Art Gitterstorung, die einen Kristall Plastisch Machen Könnte, Z. Phys. 89, Nenntes and Zehntes Heft, 660–664 (1934)

    Article  ADS  Google Scholar 

  6. E. Orowan, Zur Kristallplastizität. III. Überden Mechanisms des Gleitvorganges, Z. Phys. 89, Nenntes und Zehntes Heft, 634–659 (1934)

    Article  ADS  Google Scholar 

  7. E. Orowan, Problems of Plastic Gliding, Proc. Phys. Soc. 52 (I) 8–22 (1940)

    Article  ADS  Google Scholar 

  8. G.E. Duvall, Propagation of Plane Shock Waves in a Stress-Relaxing Medium, in Stress Waves in Anelastic Solids (edited by H. Kolsky and W. Prager), Springer-Verlag, Berlin, 1964, pp.20–32

    Chapter  Google Scholar 

  9. J.W. Taylor, Dislocation Dynamics and Dynamic Yielding, J. Appl. Phys. 36, 3146–3150 (1965)

    Article  ADS  Google Scholar 

  10. J.N. Johnson, Dislocation Transport in Shock-Loaded Single Crystals, Appl. Phys. Lett. 50, 28–30 (1987)

    Article  ADS  Google Scholar 

  11. J.N. Johnson, Dislocation Transport in Shock-Loaded (100) LiF, Bull. Amer. Phys. Soc. 33, 631 (1988)

    Google Scholar 

  12. G. Meir and R.J. Clifton, Effects of Dislocation Generation at Surfaces and Sub-grain Boundaries in Precursor Decay in High-Purity LiF, J. Appl. Phys. 59, 124–148 (1986)

    Article  ADS  Google Scholar 

  13. J.W. Swegle and D.E. Grady, Calculation of Thermal Trapping in Shear Bands, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena (edited by L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Marcel Dekker, New York, 1986, pp.705–722

    Google Scholar 

  14. P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall. 36, 81–93 (1988)

    Article  Google Scholar 

  15. D.C. Wallace, Irreversible Thermodynamics of Flow in Solids, Phys. Rev. B 22, 1477–1486 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  16. D.C. Wallace, Thermoelastic–Plastic Flow in Solids, Los Alamos Report LA-10119, 1985

    Google Scholar 

  17. J.N. Johnson, O.E. Jones, and T.E. Michaels, Dislocation Dynamics and Single-Crystal Constitutive Relations: Shock-Wave Propagation and Precursor Decay, J. Appl. Phys. 41, 2330–2339 (1970)

    Article  ADS  Google Scholar 

  18. W. Herrmann, D.L. Hicks, and E.G. Young, Attenuation of Elastic–Plastic Stress Waves, in Shock Waves and the Mechanical Properties of Solids (edited by J.J. Burke and V. Weiss), Syracuse University Press, Syracuse, 1971, pp.23–63

    Google Scholar 

  19. J.E. Vorthman and G.E. Duvall, Dislocations in Shocked and Recovered LiF, J. Appl. Phys. 53, 3607–3615 (1982)

    Article  ADS  Google Scholar 

  20. J.N. Johnson and L.M. Barker, Dislocation Dynamics and Steady Plastic Wave Profiles in 6061–T6 Aluminum, J. Appl. Phys. 40, 4321–4334 (1969)

    Article  ADS  Google Scholar 

  21. J.W. Swegle and D.E. Grady, Shock Viscosity and the Prediction of Shock Wave Rise Times, J. Appl. Phys. 58, 692–701 (1985)

    Article  ADS  Google Scholar 

  22. D.L. Tonks, The DataShoP: a Database of Weak-Shock Constitutive Data Los Alamos Report LA-12068-MS, 1991

    Google Scholar 

  23. J.R. Asay, G.R. Fowles, G.E. Duvall, M.H. Miles, and R.F. Tinder, Effects of Point Defects on Elastic Precursor Decay in LiF, J. Appl. Phys. 43, 2132–2145 (1972)

    Article  ADS  Google Scholar 

  24. J.R. Asay, G.R. Fowles, and Y.M. Gupta, Determination of Material Relaxation Properties from Measurements on Decaying Elastic Shock Fronts, J. Appl. Phys. 43, 744–746 (1972)

    Article  ADS  Google Scholar 

  25. J.R. Asay and Y.M. Gupta, Effect of Impurity Clustering on Elastic Precursor Decay in LiF, J. Appl. Phys. 43, 2220–2223 (1972)

    Article  ADS  Google Scholar 

  26. Y.M. Gupta, G.E. Duvall, and G.R. Fowles, Dislocation Mechanisms for Stress Relaxation in Shocked LiF, J. Appl. Phys. 46, 532–546 (1975)

    Article  ADS  Google Scholar 

  27. Y.M. Gupta, Stress Dependence of Elastic-Wave Attenuation in LiF, J. Appl. Phys. 46, 3395–3401 (1975)

    Article  ADS  Google Scholar 

  28. Y.M. Gupta, Effect of Crystal Orientation on Dynamic Strength of LiF, J. Appl. Phys. 48, 5067–5073 (1977)

    Article  ADS  Google Scholar 

  29. J.J. Dick, G.E. Duvall, and J.E. Vorthman, Stress Threshold for Precursor Decay in LiF, J. Appl. Phys. 47, 3987–3991 (1976)

    Article  ADS  Google Scholar 

  30. J.E. Flinn, G.E. Duvall, G.R. Fowles, and R.F. Tinder, Initiation of Dislocation Multiplication in Lithium Fluoride Monocrystals Under Impact Loading, J. Appl. Phys. 46, 3752–3759 (1975)

    Article  ADS  Google Scholar 

  31. P. Kumar and R.J. Clifton, Dislocation Motion and Generation in LiF Single Crystals Subjected to Plate Impact, J. Appl. Phys. 50, 4747–4762 (1979)

    Article  ADS  Google Scholar 

  32. K.S. Tunison and Y.M. Gupta, Effects of Surface Preparation on Elastic Precursor Decay in Shocked Pure Lithium Fluoride, Appl. Phys. Lett. 48, 1351–1353 (1986)

    Article  ADS  Google Scholar 

  33. K.S. Tunison and Y.M. Gupta, Elastic Precursor Decay in Shocked Pure LiF Crystals: Role of Surface Damage, in Shock Waves in Condensed Matter (edited by S.C. Schmidt and N.C. Holmes), Elsevier Science, Amsterdam, 1988, pp.277–280

    Google Scholar 

  34. J.E. Vorthman and G.E. Duvall, Effects of Temperature on Attenuation of the Shock Wave Precursor in <100> LiF, J. Appl. Phys. 52, 764–771 (1981)

    Article  ADS  Google Scholar 

  35. S.E. Arione and G.E. Duvall, Temperature Dependence of the Precursor Amplitude in <111> Lithium Fluoride, in Shock Waves in Condensed Matter (edited by Y.M. Gupta), Plenum, New York, 1986, pp.299–302

    Chapter  Google Scholar 

  36. P.S. Follansbee, The Rate Dependence of Structure Evolution in Copper and its Influence on the Stress-Strain Behavior at Very High Strain Rates, in Impact Loading and Dynamic Behavior of Materials (edited by C.Y. Chiem, H.-D. Kunze, and L.W. Meyer), Springer-Verlag, New York, 1988, pp.315–322, Vol.1

    Google Scholar 

  37. D. Hull, Introduction to Dislocations, Pergamon Press, Oxford, 1965

    Google Scholar 

  38. D.L. Tonks and J.N. Johnson, Shock-Wave Evolution of the Mechanical Threshold Stress in Copper, in Shock Compression of Condensed Matter (edited by S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier Science, Amsterdam, 1990, pp.333–336

    Google Scholar 

  39. J.N. Johnson and D.L. Tonks, Dynamic Plasticity in Transition from Thermal Activation to Viscous Drag, in Shock Compression of Condensed Matter— 1991 (edited by S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier Science, Amsterdam, 1992, pp.371–378

    Google Scholar 

  40. A.S. Appleton and J.S. Waddington, The Importance of Shock-Wave Profile in Explosive Loading Experiments, Acta Metall. 12, 956–957 (1964)

    Article  Google Scholar 

  41. B.B. Low, Strength of Materials, Longmans, Green, London (1955)

    Google Scholar 

  42. A.R. Champion and R.W. Rohde, Hugoniot Equation of State and the Effect of Short Stress Amplitude and Duration on the Hardness of Hadfield Steel, J. Appl. Phys. 41, 2213–2223 (1970)

    Article  ADS  Google Scholar 

  43. D.E. Mikkola and R.N. Wright, Metallurgical Effects of Shock Loading, in Shock-Waves in Condensed Matter—1981 (edited by W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, 1982, pp.98–117

    Google Scholar 

  44. G.T. Gray III and P.S. Follansbee, Influence of Peak Pressure and Pulse Duration on Substructure Development and Threshold Stress Measurements in Shock-Loaded Copper, in Impact Loading and Dynamic Behavior of Materials (edited by C.Y. Chiem, H.-D. Kunge, and L.W. Meyer), Springer-Verlag, New York, 1988, pp.541–547, Vol.2

    Google Scholar 

  45. J.R. Asay and L.C. Chhabildas, Determination of the Shear Strength of Shear-Compressed 6061–T6 Aluminum, in Shock Waves and High-Strain-Rate Phenomena in Metals (edited by M.A. Meyers and L.E. Murr), Plenum, New York, 1981, pp.417–431

    Chapter  Google Scholar 

  46. A. Kumar, F.E. Hauser, and J.E. Dorn, Viscous Drag on Dislocations in Aluminum at High Strain Rates, Acta Metall. 16, 1189–1197 (1968)

    Article  Google Scholar 

  47. J.N. Johnson, P.S. Lomdahl, and J.M. Wills, Analysis of Internal Stress and An-elasticity in the Shock-Compressed State from Unloading Wave Data, Acta Metall. 39, 3015–3026 (1991)

    Article  Google Scholar 

  48. Y.L. Bai, Thermo-Plastic Instability in Simple Shear, J. Mech Phys. Solids 30, 195–207 (1982)

    Article  ADS  MATH  Google Scholar 

  49. D.E. Grady and J.R. Asay, Calculation of Thermal Trapping in Shock-Deformation of Aluminum, J. Appl. Phys. 53, 7350 (1982)

    Article  ADS  Google Scholar 

  50. D.B. Hayes and D.E. Grady, A Thermal-Viscous Model for Heterogeneous Yielding in Aluminum, in Shock Waves in Condensed Matter—1981 (edited by W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, 1982, pp.412–416

    Google Scholar 

  51. J.N. Johnson, Hot-Spot Reaction Under Transient Pressure Conditions, in Proc. Roy. Soc. A413, 329–350 (1987)

    ADS  Google Scholar 

  52. R.A. Graham, B. Morosin, and B. Dodson, The Chemistry of Shock Compression: A Bibliography, Sandia National Laboratories Report No. SAND83-1887, 1983

    Google Scholar 

  53. G.E. Duvall, Shock Compression Chemistry in Materials Synthesis and Processing, National Materials Advisory Board NMAB-414, National Academy Press, Washington, DC, 1984

    Google Scholar 

  54. R.A. Graham, B. Morosin, E.L. Venturini, and M.J. Carr, Ann. Rev. Mater. Sci. 16, 315–341 (1986)

    Article  ADS  Google Scholar 

  55. R.A. Graham, Shock Compression of Solids as a Physical–Chemical–Mechanical Process, in Shock-Waves in Condensed Matter—1987 (edited by S.C. Schmidt and N.C. Holmes), Elsevier Science, Amsterdam, 1988, pp.11–18

    Google Scholar 

  56. R.A. Graham, B. Morosin, Y. Horie, E.L. Venturini, M. Boslough, M. Carr, and D.L. Williamson, Chemical Synthesis Under High Pressure Shock Loading, in Shock Waves in Condensed Matter (edited by Y.M. Gupta), Plenum, New York, 1986, pp.693–711

    Chapter  Google Scholar 

  57. N.N. Thadhani, Shock-Induced Chemical Synthesis of Intermetallic Compounds, in Shock Compression of Condensed Matter—1989 (edited by S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier Science, Amsterdam, 1990, pp.503–510

    Google Scholar 

  58. D. Bancroft, E.L. Peterson, and S. Minshall, Polymorphism of Iron at High Pressure, J. Appl. Phys. 27, 291–298 (1956)

    Article  ADS  Google Scholar 

  59. R.L. Clendenen and H.C. Drickamer, The Effect of Pressure on the Volume and Lattice Parameters of Ruthenium and Iron, J. Phys. Chem. Solids 25, 865–868 (1964)

    Article  ADS  Google Scholar 

  60. L.M. Barker and R.E. Hollenbach, Shock Wave Study of the α⇄ε Phase Transition in Iron, J. Appl. Phys. 45, 4872–4887 (1974)

    Article  ADS  Google Scholar 

  61. J.N. Johnson and R.W. Rohde, Dynamic Deformation Twinning in Shock-Loaded Iron, J. Appl. Phys. 42, 4171–4182 (1971)

    Article  ADS  Google Scholar 

  62. D.E. Grady, Microstructural Effects on Wave Propagation in Solids, Internat. J. Engrg. Sci. 22, 1181–1186 (1984)

    Article  ADS  Google Scholar 

  63. J.J. Dick and D.L. Styrus, Electrical Resistivity of Silver Foils Under Uniaxial Shock-Wave Compression, J. Appl. Phys. 46, 1602–1617 (1975)

    Article  ADS  Google Scholar 

  64. J.N. Johnson, Wave Velocities in Shock-Compressed Cubic and Hexagonal Single Crystals Above the Elastic Limit, J. Phys. Chem. Solids 35, 609–616 (1974)

    Article  ADS  Google Scholar 

  65. L.E. Pope and J.N. Johnson, Shock-Wave Compression of Single-Crystal Beryllium, J. Appl. Phys. 46, 720–729 (1975)

    Article  ADS  Google Scholar 

  66. S.K. Schiferl, Texture and Textural Evolution in Explosively Formed Jets, J. Appl. Phys. 66, 2637–2650 (1989)

    Article  ADS  Google Scholar 

  67. E.M. Pugh, R.J. Eichelberger, and N. Rostoker, Theory of Jet Formation by Charges with Lined Conical Cavities, J. Appl. Phys. 23, 532–536 (1952)

    Article  ADS  MATH  Google Scholar 

  68. Q. Johnson and A. Mitchell, R.N. Keeler, and L. Evans, X-Ray Diffraction During Shock-Wave Compression, Phys. Rev. Lett. 25, 1099–1101 (1970)

    Article  ADS  Google Scholar 

  69. Q. Johnson, A. Mitchell, and L. Evans, X-Ray Diffraction Evidence for Crystal-lography Order and Isotropic Compression During the Shock-Wave Process, Nature 231, 310–311 (1971)

    Article  ADS  Google Scholar 

  70. Q. Johnson, A.C. Mitchell, and L. Evans, X-Ray Diffraction Study of Single Crystals Undergoing Shock-Wave Compression, Appl. Phys. Lett. 21, 29–30 (1972)

    Article  ADS  Google Scholar 

  71. Q. Johnson and A.C. Mitchell, First X-Ray Diffraction Evidence for a Phase Transition During Shock-Wave Compression Phys. Rev. Lett. 29, 1369–1371

    Google Scholar 

  72. J.S. Wark, R.R. Whitlock, A. Hauer, J.E. Swain, and P.J. Solone, Short-Pulse X-Ray Diffraction from Laser-Shocked Crystals, in Shock Waves in Condensed Matter 1987 (edited by S.C. Schmidt and N.C. Holmes), Amsterdam, 1988, pp.781–786, Elsevier Science

    Google Scholar 

  73. J.S. Wark, R.R. Whitlock, A.A. Hauer, J.E. Swain, and P.J. Solone, Subnano-second X-Ray Diffraction from Laster-Shocked Crystals, Phys. Rev. B 40, 5705–5714 (1989)

    Article  ADS  Google Scholar 

  74. R.R. Whitlock, J.S. Wark, and G. Kiehn, Streaked X-Ray Diffraction from Laser-Shocked Crystals, in Shock Compression of Condensed Matter—1989 (edited by S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier Science, Amsterdam 1990, pp.897–900

    Google Scholar 

  75. J.S. Wark, R.R. Whitlock, G. Kiehn, R. Smith, and Z. Lin, Simulation of Transient X-Ray Diffraction from Shocked Crystals, in Shock Compression of Condensed Matter—1989 (edited by S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier Science, Amsterdam, 1990, pp.901–904

    Google Scholar 

  76. P.D. Horn and Y.M. Gupta, Wavelength Shift of the Ruby Luminescence R Lines Under Shock Compression, Appl. Phys. Lett. 49, 856–858 (1986)

    Article  ADS  Google Scholar 

  77. P.D. Horn and Y.M. Gupta, Luminescence R-Line Spectrum of Ruby Crystals Shocked to 125 kbar along the Crystal c-Axis, Phys. Rev. B 39, 973–979 (1989)

    Article  ADS  Google Scholar 

  78. S.M. Sharma and Y.M. Gupta, Theoretical Analysis of R-Line Shifts of Ruby Subjected to Different Deformation Conditions. Accepted for publication, Phys. Rev. B (1990)

    Google Scholar 

  79. T.J. Ahrens and G.E. Duvall, Stress Relaxation Behind Elastic Shock Waves in Rocks, J. Geophys. Res. 71, 4349–4360 (1966)

    Article  ADS  Google Scholar 

  80. R.J. Clifton, On the Analysis of Elastic/Visco-Plastic Waves of Finite Uniaxial Strain, in Shock Waves and the Mechanical Properties of Solids (edited by J.J. Burke and V. Weiss), Syracuse University Press, 1971, pp.73–119

    Google Scholar 

  81. R.J. Clifton, Plastic Waves: Theory and Experiment, in Mechanics Today (edited by S. Nemat-Nasser), Pergamon Press, 1972, pp.102–167

    Google Scholar 

  82. Y. Partom, Elastic Precursor Decay Calculation, J. Appl. Phys. 59, 2716–2727 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, J. (1993). Micromechanical Considerations in Shock Compression of Solids. In: Asay, J.R., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0911-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0911-9_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6943-4

  • Online ISBN: 978-1-4612-0911-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics