Skip to main content

Basic Physiology of Ion Channel Function

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

The present chapter aims to provide the clinical cardiologist specialized in arrhythmias with the bare essentials regarding ion channel function and mechanisms of arrhythmias either acquired or inherited and the fundamentals of antiarrhythmic drug therapy. In cardiac electrophysiology, there is a continuum of concepts between the function of ion channel molecules and the clinical phenotype. The basic principles of cardiac electrophysiology: from ion channels to ion currents, action potentials and EKG are discussed. Tightly controlled cardiac electrical activity depends on specialized properties of nodal, atrial, ventricular and Purkinje tissues and cells. This chapter reviews the identified molecular actors of the cardiac electrical activity, focusing on regional contributions and differences.

Denis Escande is deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song LS, Guatimosim S, Gomez-Viquez L, Sobie EA, Ziman A, Hartmann H, et al. Calcium biology of the transverse tubules in heart. Ann N Y Acad Sci. 2005;1047:99–111.

    Article  PubMed  CAS  Google Scholar 

  2. Orchard CH, Pásek M, Brette F. The role of mammalian cardiac t-tubules in excitation-contraction coupling: experimental and computational approaches. Exp Physiol. 2009;94:509–19.

    Article  PubMed  CAS  Google Scholar 

  3. Nattel S et al. Ion-channel mRNA-expression profiling: insights into cardiac remodeling and arrhythmic substrates. J Mol Cell Cardiol. 2010;48:96–105.

    Article  PubMed  CAS  Google Scholar 

  4. Corabœuf E, Weidmann S. Potentiel de repos et potentiels d’action du muscle cardiaque, mesurés à l’aide d’électrodes internes. C R Biol. 1949;143:1329–31.

    Google Scholar 

  5. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976;260:799–802.

    Article  PubMed  CAS  Google Scholar 

  6. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981;391:85–100.

    Article  PubMed  CAS  Google Scholar 

  7. Bellocq C, Wilders R, Schott JJ, Louérat-Oriou B, Boisseau P, Le Marec H, et al. A common antitussive drug, clobutinol, precipitates the long QT syndrome 2. Mol Pharmacol. 2004;66:1093–102.

    Article  PubMed  CAS  Google Scholar 

  8. Mohammad-Panah R, Demolombe S, Neyroud N, Guicheney P, Kyndt F, van den Hoff M, et al. Mutations in a dominant-negative isoform correlate with phenotype in inherited cardiac arrhythmias. Am J Hum Genet. 1999;64:1015–23.

    Article  PubMed  CAS  Google Scholar 

  9. Sabir IN, Killeen MJ, Grace AA, Huang CL. Ventricular arrhythmogenesis: insights from murine models. Prog Biophys Mol Biol. 2008;98:208–18.

    Article  PubMed  Google Scholar 

  10. Charpentier F, Bourgé A, Mérot J. Mouse models of SCN5A-related cardiac arrhythmias. Prog Biophys Mol Biol. 2008;98(2–3):230–7.

    Article  PubMed  CAS  Google Scholar 

  11. Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Brunschot S, Belterman CN, et al. Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation. 2006;114:2584–94.

    Article  PubMed  CAS  Google Scholar 

  12. Yutzey KE, Robbins J. Principles of genetic murine models for cardiac disease. Circulation. 2007;115:792–9.

    Article  PubMed  Google Scholar 

  13. Berul CI. Electrophysiological phenotyping in genetically engineered mice. Physiol Genomics. 2003;13:207–16.

    PubMed  CAS  Google Scholar 

  14. Syed F, Diwan A, Hahn HS. Murine echocardiography: a practical approach for phenotyping genetically manipulated and surgically modeled mice. J Am Soc Echocardiogr. 2005;18:982–90.

    Article  PubMed  Google Scholar 

  15. Epstein FH. MR in mouse models of cardiac disease. NMR Biomed. 2007;20:238–55.

    Article  PubMed  Google Scholar 

  16. Gellens ME, George Jr AL, Chen LQ, Chahine M, Horn R, Barchi RL, et al. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci USA. 1992;89:554–8.

    Article  PubMed  CAS  Google Scholar 

  17. Makita N, Bennett Jr PB, George Jr AL. Voltage-gated Na+ channel beta 1 subunit mRNA expressed in adult human skeletal muscle, heart, and brain is encoded by a single gene. J Biol Chem. 1994;269:7571–8.

    PubMed  CAS  Google Scholar 

  18. Thimmapaya R, Neelands T, Niforatos W, Davis-Taber RA, Choi W, Putman CB, et al. Distribution and functional characterization of human Nav1.3 splice variants. Eur J Neurosci. 2005;22:1–9.

    Article  PubMed  CAS  Google Scholar 

  19. George Jr AL, Knittle TJ, Tamkun MM. Molecular cloning of an atypical voltage-gated sodium channel expressed in human heart and uterus: evidence for a distinct gene family. Proc Natl Acad Sci USA. 1992;89:4893–7.

    Article  PubMed  CAS  Google Scholar 

  20. Stevens EB, Cox PJ, Shah BS, Dixon AK, Richardson PJ, Pinnock RD, et al. Tissue distribution and functional expression of the human voltage-gated sodium channel beta3 subunit. Pflugers Arch. 2001;441:481–8.

    Article  PubMed  CAS  Google Scholar 

  21. Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S. Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circ Res. 1999;84:551–61.

    Article  PubMed  CAS  Google Scholar 

  22. Decher N, Uyguner O, Scherer CR, Karaman B, Yuksel-Apak M, Busch AE, et al. hKChIP2 is a functional modifier of hKv4.3 potassium ­channels: cloning and expression of a short hKChIP2 splice variant. Cardiovasc Res. 2001;52:255–64.

    Article  PubMed  CAS  Google Scholar 

  23. Radicke S, Cotella D, Graf EM, Ravens U, Wettwer E. Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative beta-subunit of human cardiac transient outward current encoded by Kv4.3. J Physiol. 2005;565:751–6.

    Article  PubMed  CAS  Google Scholar 

  24. Alders M, Koopmann TT, Christiaans I, Postema PG, Beekman L, Tanck MW, et al. Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am J Hum Genet. 2009;84:468–76.

    Article  PubMed  CAS  Google Scholar 

  25. Schotten U, Haase H, Frechen D, Greiser M, Stellbrink C, Vazquez-Jimenez JF, et al. The L-type Ca2+ -channel subunits alpha1C and beta2 are not downregulated in atrial myocardium of patients with chronic atrial fibrillation. J Mol Cell Cardiol. 2003;35:437–43.

    Article  PubMed  CAS  Google Scholar 

  26. Qu Y, Baroudi G, Yue Y, Boutjdir M. Novel ­molecular mechanism involving alpha1D (Cav1.3) L-type calcium channel in autoimmune-associated sinus bradycardia. Circulation. 2005;111:3034–41.

    Article  PubMed  CAS  Google Scholar 

  27. Gao B, Sekido Y, Maximov A, Saad M, Forgacs E, Latif F, et al. Functional properties of a new voltage-dependent calcium channel alpha2delta auxiliary subunit gene (CACNA2D2). J Biol Chem. 2000;275:12237–42.

    Article  PubMed  CAS  Google Scholar 

  28. Grammer JB, Zeng X, Bosch RF, Kuhlkamp V. Atrial L-type Ca2+ channel, beta-adrenoreceptor, and 5-hydroxytryptamine type 4 receptor mRNAs in human atrial fibrillation. Basic Res Cardiol. 2001;96:82–90.

    Article  PubMed  CAS  Google Scholar 

  29. Monteil A, Chemin J, Bourinet E, Mennessier G, Lory P, Nargeot J. Molecular and functional properties of the human alpha1G subunit that forms T-type calcium channels. J Biol Chem. 2000;275:6090–100.

    Article  PubMed  CAS  Google Scholar 

  30. Brundel BJ, Van Gelder IC, Henning RH, Tuinenburg AE, Wietses M, Grandjean JG, et al. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol. 2001;37:926–32.

    Article  PubMed  CAS  Google Scholar 

  31. Bendahhou S, Marionneau C, Haurogné K, Larroque MM, Derand R, Szuts V, et al. In vitro molecular interactions and distribution of KCNE family with KCNQ1 in the human heart. Cardiovasc Res. 2005;67:529–38.

    Article  PubMed  CAS  Google Scholar 

  32. Chen L, Kurokawa J, Kass RS. Phosphorylation of the A-kinase-anchoring protein Yotiao contributes to protein kinase A regulation of a heart potassium channel. J Biol Chem. 2005;280:31347–52.

    Article  PubMed  CAS  Google Scholar 

  33. Feng J, Wible B, Li GR, Wang Z, Nattel S. Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res. 1997;80:572–9.

    Article  PubMed  CAS  Google Scholar 

  34. Bertaso F, Sharpe CC, Hendry BM, James AF. Expression of voltage-gated K+ channels in human atrium. Basic Res Cardiol. 2002;97:424–33.

    Article  PubMed  CAS  Google Scholar 

  35. Wang Z, Yue L, White M, Pelletier G, Nattel S. Differential distribution of inward rectifier ­potassium channel transcripts in human atrium versus ventricle. Circulation. 1998;98:2422–8.

    Article  PubMed  CAS  Google Scholar 

  36. Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci. 2001;2:175–84.

    Article  PubMed  CAS  Google Scholar 

  37. Eder P, Molkentin JD. TRPC channels as effectors of cardiac hypertrophy. Circ Res. 2011;108:265–72.

    Article  PubMed  CAS  Google Scholar 

  38. Patel A, Sharif-Naeini R, Folgering JR, Bichet D, Duprat F, Honoré E. Canonical TRP channels and mechanotransduction: from physiology to disease states. Pflugers Arch. 2010;460:571–81.

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Schwinger RH, Frank K, Muller-Ehmsen J, Martin-Vasallo P, Pressley TA, et al. Regional expression of sodium pump subunits isoforms and Na+ -Ca++ exchanger in the human heart. J Clin Invest. 1996;98:1650–8.

    Article  PubMed  CAS  Google Scholar 

  40. Vozzi C, Dupont E, Coppen SR, Yeh HI, Severs NJ. Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol. 1999;31:991–1003.

    Article  PubMed  CAS  Google Scholar 

  41. Li GR, Feng J, Yue L, Carrier M, Nattel S. Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res. 1996;78:689–96.

    Article  PubMed  CAS  Google Scholar 

  42. Ordog B, Brutyo E, Puskas LG, Papp JG, Varró A, Szabad J, et al. Gene expression profiling of human cardiac potassium and sodium channels. Int J Cardiol. 2006;111(3):386–93.

    Article  PubMed  Google Scholar 

  43. Richard S, Leclercq F, Lemaire S, Piot C, Nargeot J. Ca2+ currents in compensated hypertrophy and heart failure. Cardiovasc Res. 1998;37:300–11.

    Article  PubMed  CAS  Google Scholar 

  44. Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Basic Res Cardiol. 2001;96:517–27.

    Article  PubMed  CAS  Google Scholar 

  45. Rosati B, Pan Z, Lypen S, Wang HS, Cohen I, Dixon JE, et al. Regulation of KChIP2 potassium channel beta subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol. 2001;533:119–25.

    Article  PubMed  CAS  Google Scholar 

  46. Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res. 1999;85:e1–6.

    Article  PubMed  CAS  Google Scholar 

  47. Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, et al. Specific pattern of ionic channel gene expression associated with pacemaker ­activity in the mouse heart. J Physiol. 2005;562:223–34.

    Article  PubMed  CAS  Google Scholar 

  48. Hagiwara N, Irisawa H, Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol. 1988;395:233–53.

    PubMed  CAS  Google Scholar 

  49. Brahmajothi MV, Morales MJ, Reimer KA, Strauss HC. Regional localization of ERG, the channel protein responsible for the rapid ­component of the delayed rectifier, K+ current in the ferret heart. Circ Res. 1997;81:128–35.

    Article  PubMed  CAS  Google Scholar 

  50. Wymore RS, Gintant GA, Wymore RT, Dixon JE, McKinnon D, Cohen IS. Tissue and species distribution of mRNA for the IKr-like K+ channel ERG. Circ Res. 1997;80:261–8.

    Article  PubMed  CAS  Google Scholar 

  51. Brahmajothi MV, Morales MJ, Liu S, Rasmusson RL, Campbell DL, Strauss HC. In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circ Res. 1996;78:1083–9.

    Article  PubMed  CAS  Google Scholar 

  52. Satoh H. Sino-atrial nodal cells of mammalian hearts: ionic currents and gene expression of pacemaker ionic channels. J Smooth Muscle Res. 2003;39:175–93.

    Article  PubMed  Google Scholar 

  53. Dobrzynski H, Marples DD, Musa H, Yamanushi TT, Henderson Z, Takagishi Y, et al. Distribution of the muscarinic K+ channel proteins Kir3.1 and Kir3.4 in the ventricle, atrium, and sinoatrial node of heart. J Histochem Cytochem. 2001;49:1221–34.

    Article  PubMed  CAS  Google Scholar 

  54. Wickman K, Nemec J, Gendler SJ, Clapham DE. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron. 1998;20:103–14.

    Article  PubMed  CAS  Google Scholar 

  55. Petit-Jacques J, Bois P, Bescond J, Lenfant J. Mechanism of muscarinic control of the high-threshold calcium current in rabbit sino-atrial node myocytes. Pflugers Arch. 1993;423:21–7.

    Article  PubMed  CAS  Google Scholar 

  56. Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, et al. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA. 2003;100:5543–8.

    Article  PubMed  CAS  Google Scholar 

  57. DiFrancesco D, Mangoni M. Modulation of single hyperpolarization-activated channels (If) by cAMP in the rabbit sino-atrial node. J Physiol. 1994;474:473–82.

    PubMed  CAS  Google Scholar 

  58. Mitcheson JS, Hancox JC. An investigation of the role played by the E-4031-sensitive (rapid delayed rectifier) potassium current in isolated rabbit atrioventricular nodal and ventricular myocytes. Pflugers Arch. 1999;438:843–50.

    Article  PubMed  CAS  Google Scholar 

  59. Noma A, Nakayama T, Kurachi Y, Irisawa H. Resting K conductances in pacemaker and non-pacemaker heart cells of the rabbit. Jpn J Physiol. 1984;34:245–54.

    Article  PubMed  CAS  Google Scholar 

  60. Dangman KH, Danilo Jr P, Hordof AJ, Mary-Rabine L, Reder RF, Rosen MR. Electrophysiologic characteristics of human ventricular and Purkinje fibers. Circulation. 1982;65:362–8.

    Article  PubMed  CAS  Google Scholar 

  61. Dun W, Boyden PA. The Purkinje cell; 2008 style. J Mol Cell Cardiol. 2008;45:617–24.

    Article  PubMed  CAS  Google Scholar 

  62. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ, et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.

    PubMed  CAS  Google Scholar 

  63. Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest. 2009;119:2737–44.

    Article  PubMed  CAS  Google Scholar 

  64. Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet. 2010;3:374–85.

    Article  PubMed  CAS  Google Scholar 

  65. Nerbonne JM. Studying cardiac arrhythmias in the mouse – a reasonable model for probing mechanisms? Trends Cardiovasc Med. 2004;14:83–93.

    Article  PubMed  Google Scholar 

  66. Xu H, Guo W, Nerbonne JM. Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol. 1999;113:661–78.

    Article  PubMed  CAS  Google Scholar 

  67. Guo W, Li H, Aimond F, Johns DC, Rhodes KJ, Trimmer JS, et al. Role of heteromultimers in the generation of myocardial transient outward K+ currents. Circ Res. 2002;90:586–93.

    Article  PubMed  CAS  Google Scholar 

  68. Li H, Guo W, Yamada KA, Nerbonne JM. Selective elimination of IK,slow1 in mouse ventricular myocytes expressing a dominant negative Kv1.5alpha subunit. Am J Physiol Heart Circ Physiol. 2004;286:H319–28.

    Article  PubMed  CAS  Google Scholar 

  69. Xu H, Barry DM, Li H, Brunet S, Guo W, Nerbonne JM. Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 alpha subunit. Circ Res. 1999;85:623–33.

    Article  PubMed  CAS  Google Scholar 

  70. Charpentier F, Demolombe S, Escande D. Cardiac channelopathies: from men to mice. Ann Med. 2004;36 Suppl 1:28–34.

    Article  PubMed  CAS  Google Scholar 

  71. Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol. 1990;96:195–215.

    Article  PubMed  CAS  Google Scholar 

  72. Jost N, Virag L, Bitay M, Takacs J, Lengyel C, Biliczki P, et al. Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation. 2005;112:1392–9.

    Article  PubMed  Google Scholar 

  73. Inoue M, Imanaga I. Masking of A-type K+ channel in guinea pig cardiac cells by extracellular Ca2+. Am J Physiol. 1993;264:C1434–8.

    PubMed  CAS  Google Scholar 

  74. Li GR, Sun H, To J, Tse HF, Lau CP. Demonstration of calcium-activated transient outward chloride current and delayed rectifier potassium currents in Swine atrial myocytes. J Mol Cell Cardiol. 2004;36:495–504.

    Article  PubMed  CAS  Google Scholar 

  75. Akar FG, Wu RC, Deschênes I, Armoundas AA, Piacentino 3rd V, Houser SR, et al. Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito. Am J Physiol Heart Circ Physiol. 2004;286:H602–9.

    Article  PubMed  CAS  Google Scholar 

  76. Miller C. An overview of the potassium channel family. Genome Biol. 2000;1(REVIEWS0004):1–5.

    Google Scholar 

  77. Sedmera D, Reckova M, de Almeida A, Sedmerova M, Biermann M, Volejnik J, et al. Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am J Physiol Heart Circ Physiol. 2003;284(4):H1152–60.

    PubMed  CAS  Google Scholar 

  78. Leong IU, Skinner JR, Shelling AN, Love DR. Zebrafish as a model for long QT syndrome: the evidence and the means of manipulating zebrafish gene expression. Acta Physiol (Oxf). 2010;199:257–76.

    CAS  Google Scholar 

  79. Djurovic S, Iversen N, Jeansson S, Hoover F, Christensen G. Comparison of nonviral transfection and adeno-associated viral transduction on cardiomyocytes. Mol Biotechnol. 2004;28:21–32.

    Article  PubMed  CAS  Google Scholar 

  80. Kasahara H, Aoki H. Gene silencing using ­adenoviral RNAi vector in vascular smooth muscle cells and cardiomyocytes. Methods Mol Med. 2005;112:155–72.

    Article  PubMed  CAS  Google Scholar 

  81. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  82. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363:1397–409.

    Article  PubMed  CAS  Google Scholar 

  83. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471:225–9.

    Article  PubMed  CAS  Google Scholar 

  84. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994;74:1071–96.

    Article  PubMed  CAS  Google Scholar 

  85. Silva J, Rudy Y. Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve. Circulation. 2005;112:1384–91.

    Article  PubMed  Google Scholar 

  86. Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, Rasmusson RL. Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol. 2004;287:H1378–403.

    Article  PubMed  CAS  Google Scholar 

  87. Winslow RL, Rice J, Jafri S, Marban E, O’Rourke B. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res. 1999;84:571–86.

    Article  PubMed  CAS  Google Scholar 

  88. Fox JJ, McHarg JL, Gilmour Jr RF. Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol. 2002;282:H516–30.

    PubMed  CAS  Google Scholar 

  89. Decker KF, Heijman J, Silva JR, Hund TJ, Rudy Y. Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium. Am J Physiol Heart Circ Physiol. 2009;296:H1017–26.

    Article  PubMed  CAS  Google Scholar 

  90. Nygren A, Fiset C, Firek L, Clark JW, Lindblad DS, Clark RB, et al. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ Res. 1998;82:63–81.

    Article  PubMed  CAS  Google Scholar 

  91. Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol. 1998;275:H301–21.

    PubMed  CAS  Google Scholar 

  92. Koivumäki JT, Korhonen T, Tavi P. Impact of ­sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: a computational study. PLoS Comput Biol. 2011;7:e1001067.

    Article  PubMed  CAS  Google Scholar 

  93. Krueger MW, Severi S, Rhode K, Genovesi S, Weber FM, Vincenti A, et al. Alterations of atrial electrophysiology related to hemodialysis session: insights from a multiscale computer model. J Electrocardiol. 2011;44:176–83.

    Article  PubMed  Google Scholar 

  94. Muñoz LM, Stockton JF, Otani NF. Applications of control theory to the dynamics and propagation of cardiac action potentials. Ann Biomed Eng. 2010;38(9):2865–76.

    Article  PubMed  Google Scholar 

  95. Sampson KJ, Iyer V, Marks AR, Kass RS. A computational model of Purkinje fibre single cell ­electrophysiology: implications for the long QT syndrome. J Physiol. 2010;588:2643–55.

    Article  PubMed  CAS  Google Scholar 

  96. Priebe L, Beuckelmann DJ. Simulation study of cellular electric properties in heart failure. Circ Res. 1998;82:1206–23.

    Article  PubMed  CAS  Google Scholar 

  97. ten Tusscher KH, Noble D, Noble PJ, Panfilov AV. A model for human ventricular tissue. Am J Physiol Heart Circ Physiol. 2004;286:H1573–89.

    Article  PubMed  Google Scholar 

  98. Iyer V, Mazhari R, Winslow RL. A computational model of the human left-ventricular epicardial myocyte. Biophys J. 2004;87:1507–25.

    Article  PubMed  CAS  Google Scholar 

  99. O’Hara T, Virág L, Varró A, Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol. 2011;7:e1002061.

    Article  PubMed  CAS  Google Scholar 

  100. Moreno JD, Zhu ZI, Yang PC, Bankston JR, Jeng MT, Kang C, et al. A computational model to predict the effects of class I anti-arrhythmic drugs on ventricular rhythms. Sci Transl Med. 2011;3:98ra83.

    Article  PubMed  CAS  Google Scholar 

  101. Silva JR, Rudy Y. Multi-scale electrophysiology modeling: from atom to organ. J Gen Physiol. 2010;135:575–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Baró PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Baró, I., Escande, D., Demolombe, S. (2013). Basic Physiology of Ion Channel Function. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics