Skip to main content

Cellular Automaton Methods for Heat and Mass Transfer Intensification

  • Chapter
  • First Online:
Heat and Mass Transfer Intensification and Shape Optimization
  • 2100 Accesses

Abstract

In this chapter, we will return to the local scale and present a fundamental approach for shape optimization. This numerical approach is based on the so-called cellular automaton (CA) algorithm, capable of treating a class of optimization problems that we encounter in heat and mass transfer. Two examples will be illustrated to demonstrate the procedure of CA approach: (1) how to organize a finite quantity of high conductivity material in order to efficiently drain heat from a heat generating surface to a sink and (2) how to optimize the shape of fluid path with a finite void volume that connects a source to one or several outlet ports, with the purpose of flow equidistribution and pressure drop minimization. The shape optimization by CA procedure generally leads to the creation of multi-scale arborescent geometries that commonly exist in nature, with consequently intensified heat and mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bejan A (1997) Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Transf 40:799–816

    Article  MATH  Google Scholar 

  • Bejan A, Tondeur D (1998) Equipartition, optimal allocation, and the constructal approach to predicting organization in nature. Rev Gen Therm 37:165–180

    Article  Google Scholar 

  • Boichot R, Deseure J (2008) Interconnect design optimization of sofc using a cellular automation and cfd tools. In: Fundamentals and developments of fuel cells (FDFC) conference, Nancy, France

    Google Scholar 

  • Boichot R, Luo L (2010) A simple cellular automaton algorithm to optimize heat transfer in complex configurations. Int J Exergy 7:51–64

    Article  Google Scholar 

  • Boichot R, Luo L, Fan Y (2009) Tree-network structure generation for heat conduction by cellular automaton. Energy Convers Manage 50:376–386

    Article  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41:77–107

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L (2012) Progress in study on constructal theory and its applications. Sci China Ser E: Technol Sci 55:802–820

    Article  Google Scholar 

  • Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  • Cheng X, Li Z, Guo Z (2003) Constructs of highly effective heat transport paths by bionic optimization. Sci China Ser E: Technol Sci 46:296–302

    Article  Google Scholar 

  • Evgrafov A (2005a) The limits of porous materials in the topology optimization of stokes flows. Appl Math Optim 52:263–277

    Article  MathSciNet  MATH  Google Scholar 

  • Evgrafov A (2005b) Topology optimization of slightly compressible fluids. Z Angew Math Mech 86:46–62

    Article  MathSciNet  Google Scholar 

  • Evgrafov A, Pingen G, Maute K (2006) Topology optimization of fluid problems by the lattice Boltzmann method. Solid Mech Appl 137:559–568

    Article  Google Scholar 

  • Fan Z, Zhou X, Luo L, Yuan W (2008a) Experimental investigation of the flow distribution of a 2-dimensional constructal distributor. Exp Therm Fluid Sci 33:77–83

    Article  Google Scholar 

  • Fan Y, Boichot R, Goldin T, Luo L (2008b) Flow distribution property of the constructal distributor and heat transfer intensification in a mini heat exchanger. AIChE J 54:2796–2808

    Article  Google Scholar 

  • Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidisc Optim 30:181–192

    Google Scholar 

  • Ghodoossi L (2004) Conceptual study on constructal theory. Energy Convers Manage 45:1379–1395

    Article  Google Scholar 

  • Ghodoossi L, Egrican N (2004) Conductive cooling of triangular shaped electronics using constructal theory. Energy Convers Manage 45:811–828

    Article  Google Scholar 

  • Gosselin L, Tye-Gingras M, Mathieu-Potvin F (2009) Review of utilization of genetic algorithms in heat transfer problems. Int J Heat Mass Transf 52:2169–2188

    Article  MATH  Google Scholar 

  • Klimetzek FR, Paterson J, Moos O (2006) Autoduct: Topology optimization for fluid flow. In: Proceedings of Konferenz fur Angewandte Optimierung, Karlsruhe

    Google Scholar 

  • Kuddusi L, Denton JC (2007) Analytical solution for heat conduction problem in composite slab and its implementation in constructal solution for cooling of electronics. Energy Convers Manage 48:1089–1105

    Article  Google Scholar 

  • Kuddusi L, Egrican N. (2008) A critical review of constructal theory. Energy Convers Manage 49:1283–1294

    Google Scholar 

  • Lorenzini G, Oliveira Rocha LA (2006) Constructal design of y-shaped assembly of fins. Int J Heat Mass Transf 49:4552–4557

    Article  MATH  Google Scholar 

  • Luo L, Fan Y, Zhang W, Yuan X, Midoux N (2007) Integration of constructal distributors to a mini crossflow heat exchanger and their assembly configuration optimization. Chem Eng Sci 62:3605–3619

    Article  Google Scholar 

  • Mathieu-Potvin F, Gosselin L (2007) Optimal conduction pathways for cooling a heat-generating body: a comparison exercise. Int J Heat Mass Transf 50:2996–3006

    Article  MATH  Google Scholar 

  • Moos O, Klimetzek FR, Rossmann R (2004) Bionic optimization of air-guiding systems. In: Proceedings of SAE 2004 world congress and exhibition, Detroit, USA, pp 95–100

    Google Scholar 

  • Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multi Optim 34:507–524

    Article  MathSciNet  Google Scholar 

  • Rocha LAO, Lorente S, Bejan A (2002) Constructal design for cooling a disc-shaped area by conduction. Int J Heat Mass Transf 45:1643–1652

    Article  MATH  Google Scholar 

  • Wang L, Fan Y, Luo L (2010) Heuristic optimality criterion algorithm for shape design of fluid flow. J Comput Phys 229:8031–8044

    Article  MATH  Google Scholar 

  • Wei S, Chen L, Sun F (2009) The area-point constructal optimization for discrete variable cross-section conducting path. Appl Energy 86:1111–1118

    Article  Google Scholar 

  • Wu W, Chen L, Sun F (2007) On the “area to point” flow problem based on constructal theory. Energy Convers Manage 48:101–105

    Article  Google Scholar 

  • Xia Z, Cheng X, Li Z, Guo Z (2004) Bionic optimization of heat transport paths for heat conduction problems. J Enhanced Heat Transf 11:119–131

    Article  Google Scholar 

  • Xu X, Liang X, Ren J (2007) Optimization of heat conduction using combinatorial optimization algorithms. Int J Heat Mass Transf 50:1675–1682

    Article  MATH  Google Scholar 

  • Zhang Y, Liu S (2008) Design of conducting paths based on topology optimization. Heat Mass Transf 44:1217–1227

    Article  Google Scholar 

  • Zhou S, Chen L, Sun F (2007) Optimization of constructal volume-point conduction with variable cross section conducting path. Energy Convers Manage 48:106–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Boichot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Boichot, R., Wang, L., Luo, L., Fan, Y. (2013). Cellular Automaton Methods for Heat and Mass Transfer Intensification. In: Luo, L. (eds) Heat and Mass Transfer Intensification and Shape Optimization. Springer, London. https://doi.org/10.1007/978-1-4471-4742-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4742-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4741-1

  • Online ISBN: 978-1-4471-4742-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics