Skip to main content

Models in Wound Healing

  • Chapter
  • First Online:
Measurements in Wound Healing

Abstract

This short chapter deals engagingly with invitro models making references to in vivo and other models. Clearly modelling could easily be a book in its own right. The authors of this chapter have presented the methodology of modelling as applicable to wound healing. The chapter is short and to the point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong DG, Lavery LA, Harkless LB. Validation of a diabetic wound classification system. The contribution of depth, infection, and ischemia to risk of amputation. Diabetes Care. 1998;21(5):855–9.

    Article  PubMed  CAS  Google Scholar 

  2. Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med. 2005;22(4):359–70.

    Article  PubMed  CAS  Google Scholar 

  3. Junod A, et al. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969;48(11):2129–39.

    Article  PubMed  CAS  Google Scholar 

  4. Lenzen S, Panten U. Alloxan: history and mechanism of action. Diabetologia. 1988;31(6):337–42.

    Article  PubMed  CAS  Google Scholar 

  5. Allman RM. Pressure ulcers among the elderly. N Engl J Med. 1989;320(13):850–3.

    Article  PubMed  CAS  Google Scholar 

  6. Salcido R, Popescu A, Ahn C. Animal models in pressure ulcer research. J Spinal Cord Med. 2007;30(2):107–16.

    PubMed  Google Scholar 

  7. Salcido R, et al. An animal model and computer-controlled surface pressure delivery system for the production of pressure ulcers. J Rehabil Res Dev. 1995;32(2):149–61.

    PubMed  CAS  Google Scholar 

  8. Schaffer M, Witte M, Becker HD. Models to study ischemia in chronic wounds. Int J Low Extrem Wounds. 2002;1(2):104–11.

    Article  PubMed  Google Scholar 

  9. Reed BR, Clark RA. Cutaneous tissue repair: practical implications of current knowledge. II. J Am Acad Dermatol. 1985;13(6):919–41.

    Article  PubMed  CAS  Google Scholar 

  10. Wu L, et al. Transforming growth factor-beta1 fails to stimulate wound healing and impairs its signal transduction in an aged ischemic ulcer model: importance of oxygen and age. Am J Pathol. 1999;154(1):301–9.

    Article  PubMed  Google Scholar 

  11. Constantine BE, Bolton LL. A wound model for ischemic ulcers in the guinea pig. Arch Dermatol Res. 1986;278(5):429–31.

    Article  PubMed  CAS  Google Scholar 

  12. Skrabut EM, et al. Removal of necrotic tissue with an ananain-based enzyme-debriding preparation. Wound Repair Regen. 1996;4(4):433–43.

    Article  PubMed  CAS  Google Scholar 

  13. Davidson JM. Animal models for wound repair. Arch Dermatol Res. 1998;290(Suppl):S1–11.

    Article  PubMed  Google Scholar 

  14. Ahn ST, Mustoe TA. Effects of ischemia on ulcer wound healing: a new model in the rabbit ear. Ann Plast Surg. 1990;24(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  15. Mustoe TA, et al. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest. 1991;87(2):694–703.

    Article  PubMed  CAS  Google Scholar 

  16. Mustoe TA, et al. Role of hypoxia in growth factor responses: differential effects of basic fibroblast growth factor and platelet-derived growth factor in an ischemic wound model. Wound Repair Regen. 1994;2(4):277–83.

    Article  PubMed  CAS  Google Scholar 

  17. DiPietro LA, Burns AL. Wound healing: methods and protocols. Totowa: Humana; 2003, xv, 467 pp.

    Book  Google Scholar 

  18. Alekseev AA, Iakovlev VP, Fedorov VD. Infection in burn patients: the problems of pathogenesis, prevention and treatment. Khirurgiia (Mosk), 1999;(6):4–9.

    Google Scholar 

  19. Greenfield E, McManus AT. Infectious complications: prevention and strategies for their control. Nurs Clin North Am. 1997;32(2):297–309.

    PubMed  CAS  Google Scholar 

  20. Konturek PC, et al. Influence of bacterial lipopolysaccharide on healing of chronic experimental ulcer in rat. Scand J Gastroenterol. 2001;36(12):1239–47.

    Article  PubMed  CAS  Google Scholar 

  21. Tarnuzzer RW, Schultz GS. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen. 1996;4(3):321–5.

    Article  PubMed  CAS  Google Scholar 

  22. Robson MC, Stenberg BD, Heggers JP. Wound healing alterations caused by infection. Clin Plast Surg. 1990;17(3):485–92.

    PubMed  CAS  Google Scholar 

  23. Robson MC. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am. 1997;77(3):637–50.

    Article  PubMed  CAS  Google Scholar 

  24. Cheng EY, et al. Soft tissue sarcomas: preoperative versus postoperative radiotherapy. J Surg Oncol. 1996;61(2):90–9.

    Article  PubMed  CAS  Google Scholar 

  25. Tibbs MK. Wound healing following radiation therapy: a review. Radiother Oncol. 1997;42(2):99–106.

    Article  PubMed  CAS  Google Scholar 

  26. Yu AC, Lee YL, Eng LF. Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res. 1993;34(3):295–303.

    Article  PubMed  CAS  Google Scholar 

  27. Yung S, Davies M. Response of the human peritoneal mesothelial cell to injury: an in vitro model of peritoneal wound healing. Kidney Int. 1998;54(6):2160–9.

    Article  PubMed  CAS  Google Scholar 

  28. Folkman J, Haudenschild C. Angiogenesis in vitro. Nature. 1980;288(5791):551–6.

    Article  PubMed  CAS  Google Scholar 

  29. Vailhe B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest. 2001;81(4):439–52.

    Article  PubMed  CAS  Google Scholar 

  30. Bigg HF, Cawston TE. All-trans-retinoic acid interacts synergistically with basic fibroblast growth factor and epidermal growth factor to stimulate the production of tissue inhibitor of metalloproteinases from fibroblasts. Arch Biochem Biophys. 1995;319(1):74–83.

    Article  PubMed  CAS  Google Scholar 

  31. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 2003;13(5):264–9.

    Article  PubMed  CAS  Google Scholar 

  32. Lanza RP, Langer RS, Vacanti J. Principles of tissue engineering. 3rd ed. London: Academic; 2007, xxvii, 1307 pp.

    Google Scholar 

  33. Moll I, et al. Characterization of epidermal wound healing in a human skin organ culture model: acceleration by transplanted keratinocytes. J Invest Dermatol. 1998;111(2):251–8.

    Article  PubMed  CAS  Google Scholar 

  34. Pope M, et al. Both dendritic cells and memory T lymphocytes emigrate from organ cultures of human skin and form distinctive dendritic-T-cell conjugates. J Invest Dermatol. 1995;104(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  35. Datubo-Brown DD. Keloids: a review of the literature. Br J Plast Surg. 1990;43(1):70–7.

    Article  PubMed  CAS  Google Scholar 

  36. Hillmer MP, MacLeod SM. Experimental keloid scar models: a review of methodological issues. J Cutan Med Surg. 2002;6(4):354–9.

    Article  PubMed  CAS  Google Scholar 

  37. Shetlar MR, et al. The use of athymic nude mice for the study of human keloids. Proc Soc Exp Biol Med. 1985;179(4):549–52.

    PubMed  CAS  Google Scholar 

  38. Polo M, et al. An in vivo model of human proliferative scar. J Surg Res. 1998;74(2):187–95.

    Article  PubMed  CAS  Google Scholar 

  39. Shetlar MR, et al. Involution of keloid implants in athymic mice treated with pirfenidone or with triamcinolone. J Lab Clin Med. 1998;132(6):491–6.

    Article  PubMed  CAS  Google Scholar 

  40. Kischer CW, et al. Implants of hypertrophic scars and keloids into the nude (athymic) mouse: viability and morphology. J Trauma. 1989;29(5):672–7.

    Article  PubMed  CAS  Google Scholar 

  41. Shetlar MR, et al. Implants of keloid and hypertrophic scars into the athymic nude mouse: changes in the glycosaminoglycans of the implants. Connect Tissue Res. 1991;26(1–2):23–36.

    Article  PubMed  CAS  Google Scholar 

  42. Kischer CW, Sheridan D, Pindur J. Use of nude (athymic) mice for the study of hypertrophic scars and keloids: vascular continuity between mouse and implants. Anat Rec. 1989;225(3):189–96.

    Article  PubMed  CAS  Google Scholar 

  43. Ramos ML, Gragnani A, Ferreira LM. Is there an ideal animal model to study hypertrophic scarring? J Burn Care Res. 2008;29(2):363–8.

    Article  PubMed  Google Scholar 

  44. Morris DE, et al. Acute and chronic animal models for excessive dermal scarring: quantitative studies. Plast Reconstr Surg. 1997;100(3):674–81.

    Article  PubMed  CAS  Google Scholar 

  45. Kloeters O, Tandara A, Mustoe TA. Hypertrophic scar model in the rabbit ear: a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction. Wound Repair Regen. 2007;15 Suppl 1:S40–5.

    Article  PubMed  Google Scholar 

  46. Zhu KQ, et al. Changes in VEGF and nitric oxide after deep dermal injury in the female, red Duroc pig-further similarities between female, Duroc scar and human hypertrophic scar. Burns. 2005;31(1):5–10.

    Article  PubMed  Google Scholar 

  47. Gallant-Behm CL, Hart DA. Genetic analysis of skin wound healing and scarring in a porcine model. Wound Repair Regen. 2006;14(1):46–54.

    Article  PubMed  Google Scholar 

  48. Harunari N, et al. Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar. Burns. 2006;32(6):669–77.

    Article  PubMed  Google Scholar 

  49. Zhu KQ, et al. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin. Burns. 2003;29(7):649–64.

    Article  PubMed  Google Scholar 

  50. Hochman B, et al. Keloid heterograft in the hamster (Mesocricetus auratus) cheek pouch, Brazil. Acta Cir Bras. 2005;20(3):200–12.

    Article  PubMed  Google Scholar 

  51. Barker CF, Billingham RE. The lymphatic status of hamster cheek pouch tissue in relation to its properties as a graft and as a graft site. J Exp Med. 1971;133(3):620–39.

    Article  PubMed  CAS  Google Scholar 

  52. Duling BR. The preparation and use of the hamster cheek pouch for studies of the microcirculation. Microvasc Res. 1973;5(3):423–9.

    Article  PubMed  CAS  Google Scholar 

  53. Goldenberg DM, Steinborn W. Reduced lymphatic drainage from hamster cheek pouch. Proc Soc Exp Biol Med. 1970;135(3):724–6.

    PubMed  CAS  Google Scholar 

  54. Grose R, Werner S. Wound-healing studies in transgenic and knockout mice. Mol Biotechnol. 2004;28(2):147–66.

    Article  PubMed  CAS  Google Scholar 

  55. Liu Y, et al. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol. 2003;121(5):963–8.

    Article  PubMed  CAS  Google Scholar 

  56. Fang RC, Mustoe TA. Animal models of wound healing: utility in transgenic mice. J Biomater Sci Polym Ed. 2008;19(8):989–1005.

    Article  PubMed  CAS  Google Scholar 

  57. Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev. 1996;10(2):165–75.

    Article  PubMed  CAS  Google Scholar 

  58. Mann GB, et al. Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell. 1993;73(2):249–61.

    Article  PubMed  CAS  Google Scholar 

  59. Reid RR, et al. The future of wound healing: pursuing surgical models in transgenic and knockout mice. J Am Coll Surg. 2004;199(4):578–85.

    Article  PubMed  Google Scholar 

  60. Jorgensen LN, et al. Evaluation of the wound healing potential in human beings from the subcutaneous insertion of expanded polytetrafluoroethylene tubes. Wound Repair Regen. 1994;2(1):20–30.

    Article  PubMed  CAS  Google Scholar 

  61. Jorgensen LN, Madsen SM, Gottrup F. Implantable wound healing models and the determination of subcutaneous collagen deposition in expanded polytetrafluoroethylene implants. Methods Mol Med. 2003;78:263–73.

    PubMed  Google Scholar 

  62. Goodson 3rd WH, Hunt TK. Development of a new miniature method for the study of wound healing in human subjects. J Surg Res. 1982;33(5):394–401.

    Article  PubMed  Google Scholar 

  63. Jorgensen LN, et al. Increased collagen deposition in an uncomplicated surgical wound compared to a minimal subcutaneous test wound. Wound Repair Regen. 2001;9(3):194–9.

    Article  PubMed  CAS  Google Scholar 

  64. Friedman A, Xue C. A mathematical model for chronic wounds. Math Biosci Eng. 2010;8:253–61. doi:10.3934/mbe.2011.8.253. Pubmed accessed on 30 June 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Mani D.Sc., FACA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Miao, M.Y., Xie, T., Lu, S., Mani, R. (2012). Models in Wound Healing. In: Mani, R., Romanelli, M., Shukla, V. (eds) Measurements in Wound Healing. Springer, London. https://doi.org/10.1007/978-1-4471-2987-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2987-5_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2986-8

  • Online ISBN: 978-1-4471-2987-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics