Skip to main content
Log in

Alloxan: history and mechanism of action

  • Review
  • Published:
Diabetologia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wöhler F, Liebig J (1838) Untersuchungen zur Natur der Harnsäure. Ann Pharm 26: 241–340

    Google Scholar 

  2. Wallach O (1901) Briefwechsel zwischen J. Berzelius und F. Wöhler. Im Auftrage der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Vol 2. Wilhelm Engelmann Verlag, Leipzig

    Google Scholar 

  3. Hofmann AW (1888) Aus Justus Liebig's und Friedrich Wöhler's Briefwechsel in den Jahren 1829–1873. Vieweg, Braunschweig

    Google Scholar 

  4. Brugnatelli G (1818) Sopra i cangiamenti che awengono nell' ossiurico (ac. urico) trattato coll' ossisettonoso (ac. nitroso). G Fis Chim 117–129

  5. Patterson JW, Lazarow A, Levey S (1949) Alloxan and dialuric acid: their stabilities and ultraviolet absorption spectra. J Biol Chem 177: 187–196

    CAS  Google Scholar 

  6. Webb JL (1966) Alloxan. In: Webb JL (ed) Enzyme and metabolic inhibitors. Academic Press, New York, pp 367–419

    Google Scholar 

  7. Dunn JS, Sheehan HL, McLetchie NGB (1943) Necrosis of islets of Langerhans produced experimentally. Lancet I: 484–487

    Google Scholar 

  8. Jacobs HR (1937) Hypoglycemic action of alloxan. Proc Soc Exp Biol Med 37: 407–409

    Google Scholar 

  9. Bailey CC, Bailey OT (1943) The production of diabetes mellitus in rabbits with alloxan. J Am Med Assoc 122: 1165–1166

    CAS  Google Scholar 

  10. Brunschwig A, Goldner MG, Allen JG, Gomori G (1943) Alloxan. J Am Med Assoc 122: 966

    Google Scholar 

  11. Dunn JS, McLetchie NGB (1943) Experimental alloxan diabetes in the rat. Lancet II: 384–387

    CAS  Google Scholar 

  12. Goldner MG, Gomori G (1943) Alloxan diabetes mellitus in the dog. Endocrinology 33: 297–308

    CAS  Google Scholar 

  13. Gomori G, Goldner MG (1943) Production of diabetes mellitus in rats with alloxan. Proc Soc Exp Biol Med 54: 287–290

    CAS  Google Scholar 

  14. Dunn JS, Kirkpatrick J, McLetchie NGB, Telfer SV (1943) Necrosis of the islets of Langerhans produced experimentally. J Path Bact 55: 245–257

    Article  CAS  Google Scholar 

  15. Hellman B, Diderholm H (1955) The diabetogenic effect of alloxan after elimination of extra-pancreatic factors. Acta Endocrinol 20: 81–87

    CAS  PubMed  Google Scholar 

  16. Dunn JS, Duffy E, Gilmour MK, Kirkpatrick J, McLetchie NGB (1944) Further observations on the effects of alloxan on the pancreatic islets. J Physiol 103: 233–243

    CAS  Google Scholar 

  17. Duff GL, Murray EGD (1945) The pathology of the pancreas in experimental diabetes mellitus. Am J Med Sci 210: 381–397

    Google Scholar 

  18. Goldner MG (1945) Alloxan diabetes. Its production and mechanism. N Y Acad Med Bull 21: 44–55

    Google Scholar 

  19. Abderhalden E (1947) Alloxandiabetes. Z Vitam Horm Fermentforschung 1: 191–198

    CAS  Google Scholar 

  20. Lukens FDW (1948) Alloxan diabetes. Physiol Rev 28: 304–330

    CAS  Google Scholar 

  21. Renold AE (1948) Der Alloxan-Diabetes. Dissertation, Zürich

  22. Creutzfeldt W (1949) Zur Histophysiologie des Inselapparates. Z Zellforsch 34: 280–336

    Article  Google Scholar 

  23. Lazarow A (1949) Factors controlling the development and progression of diabetes. Physiol Rev 29: 48–74

    CAS  Google Scholar 

  24. Houssay BA (1950) Action of sulphur compounds on carbohydrate metabolism and on diabetes. Am J Med Sci 219: 353–367

    CAS  Google Scholar 

  25. Falkmer S (1961) Experimental diabetes research in fish. Acta Endocrinol [Suppl.] 59: 1–122

    Google Scholar 

  26. Lazarow A (1963) Functional characterization and metabolic pathways of the pancreatic islets tissue. Recent Prog Horm Res 19: 489–546

    CAS  PubMed  Google Scholar 

  27. Rerup CC (1970) Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev 22: 485–518

    CAS  PubMed  Google Scholar 

  28. Frerichs H, Creutzfeldt W (1971) Der experimentelle chemische Diabetes. In: Dörzbach E (ed) Handbuch Experimentelle Pharmakologie, Vol 32, Part l, Springer, Berlin Heidelberg New York, pp 159–202

    Google Scholar 

  29. Cooperstein SJ, Watkins D (1981) Action of toxic drugs on islet cells. In: Cooperstein SJ, Watkins D (eds) The islet of Langerhans. Academic Press, New York, p 387–425

    Google Scholar 

  30. Malaisse WJ (1982) Alloxan toxicity to the pancreatic B-cell. Biochem Pharmacol 31: 3527–3534

    Article  CAS  PubMed  Google Scholar 

  31. Wieland H, Bergel F (1924) Über den Mechanismus der Oxidationsvorgänge VIII. Zum oxydativen Abbau der Aminosäuren. Liebig's Ann Chem 439: 196–210

    CAS  Google Scholar 

  32. Labes R, Freisburger H (1930) Das Alloxan als Oxydationsmittel für Thiolgruppen, als Kapillargift und als Krampfgift. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 156: 226–252

    Article  CAS  Google Scholar 

  33. Lieben F, Edel E (1933) Notiz zur Reaktion der Gewebe mit Alloxan. Biochem Z 259: 8–10

    CAS  Google Scholar 

  34. Lazarow A (1946) Protective effect of glutathione and cysteine against alloxan diabetes in the rat. Proc Soc Exp Biol Med 61: 441–447

    CAS  Google Scholar 

  35. Lazarow A (1947) Further studies of effect of sulphur compounds on production of diabetes with alloxan. Proc Soc Exp Biol Med 66: 4–7

    CAS  Google Scholar 

  36. Lazarow A, Patterson JW, Levey S (1948) The mechanism of cysteine and glutathione protection against alloxan diabetes. Science 108: 308–309

    CAS  Google Scholar 

  37. Sen PB, Bhattacharya G (1952) Reversal of the diabetogenic action of alloxan by sulfhydryl compounds. Science 115: 41–43

    CAS  PubMed  Google Scholar 

  38. Sen PB, Bhattacharya G (1952) Protection against alloxan diabetes by glucose. Indian J Physiol 6: 112–114

    CAS  Google Scholar 

  39. Bhattacharya G (1954) On the protection against alloxan diabetes by hexoses. Science 120: 841–843

    CAS  PubMed  Google Scholar 

  40. Carter WJ, Younathan ES (1962) Studies on protection against the diabetogenic effect of alloxan by glucose. Proc Soc Exp Biol Med 109: 611–612

    CAS  PubMed  Google Scholar 

  41. Lenzen S, Panten U (1988) Signal recognition by pancreatic B-cells. Biochem Pharmacol 37: 371–378

    Article  CAS  PubMed  Google Scholar 

  42. Iynedjian PB, Möbius G, Scitz HJ, Wollheim CB, Renold AE (1986) Tissue-specific expression of glucokinase: identification of the gene-product in liver and pancreatic islets. Proc Natl Acad Sci USA 83: 1998–2001

    CAS  PubMed  Google Scholar 

  43. Lenzen S, Tiedge M, Panten U (1987) Glucokinase in pancreatic B-cells and its inhibition by alloxan. Acta Endocrinol 115: 21–29

    CAS  PubMed  Google Scholar 

  44. Meglasson MD, Matschinsky FM (1984) New perspectives on pancreatic islet glucokinase. Am J Physiol 246: E1–E13

    CAS  PubMed  Google Scholar 

  45. Miwa I, Hara H, Okuda J, Matsunnaga H, Ogawa S (1984) Inhibition of glucokinase in hepatocytes by alloxan. Biochem Int 9: 595–602

    CAS  PubMed  Google Scholar 

  46. Hara H, Miwa I, Okuda J (1986) Inhibition of rat liver glucokinase by alloxan and ninhydrin. Chem Pharm Bull 34: 4731–4737

    CAS  PubMed  Google Scholar 

  47. Meglasson MD, Burch PT, Berner DK, Najafi H, Matschinsky FM (1986) Identification of glucokinase as an alloxan-sensitive glucose sensor of the pancreaticβ-cell Diabetes 35: 1163–1173

    CAS  PubMed  Google Scholar 

  48. Miwa I, Hara H, Okuda J (1986) Parallel inhibition of islet glucokinase and glucose-stimulated insulin secretion by either alloxan or ninhydrin. J Clin Biochem Nutr 1: 237–245

    CAS  Google Scholar 

  49. Lenzen S, Brand F-H, Panten U (1988) Structural requirements of alloxan and ninhydrin for glucokinase inhibition and of glucose for protection against inhibition. Br J Pharmacol (in press)

  50. Lenzen S, Brand F-H, Freytag S (1988) Competition between alloxan and glucose for the glucokinase sugar binding site. Nau- nyn-Schmideberg's Arch Pharmacol 337: R83

    Google Scholar 

  51. Weaver DC, McDaniel ML, Naber SP, Barry CD, Lacy PE (1978) Alloxan stimulation and inhibition of insulin release from isolated rat islets of Langerhans. Diabetes 27: 1205–1214

    CAS  PubMed  Google Scholar 

  52. Ishibashi F, Onari K, Sato T, Kawate R (1978) Studies on the mechanism of alloxan inhibition of glucose-induced insulin release. Hiroshima J Med Sci 27: 211–219

    CAS  PubMed  Google Scholar 

  53. Weaver DC, McDaniel ML, Lacy PE (1978) Mechanism of barbituric-acid protection against inhibition by alloxan of glucoseinduced insulin release. Diabetes 27: 71–77

    CAS  PubMed  Google Scholar 

  54. Tait SPC, Poje M, Rocic B, Ashcroft SJH (1983) Diabetogenic action of alloxan-like compounds: the effect of dehydrouramil hydrate hydrochloride on isolated islets of Langerhans of the rat. Diabetologia 25: 360–364

    Article  CAS  PubMed  Google Scholar 

  55. Rossini AA, Berger M, Shadden J, Cahill GF (1974) Beta cell protection to alloxan necrosis by anomers of D-glucose. Science 183: 424

    CAS  PubMed  Google Scholar 

  56. McDaniel ML, Roth CE, Fink CJ, Lacy PE (1976) Effect of anomers of D-glucose on alloxan inhibition of insulin release in isolated perifused pancareatic islets. Endocrinology 99: 535–540

    CAS  PubMed  Google Scholar 

  57. Niki A, Niki H, Miwa I, Lin BJ (1976) Interaction of alloxan and anomers of D-glucose on glucose-induced insulin secretion and biosynthesis in vitro. Diabetes 25: 574–579

    CAS  PubMed  Google Scholar 

  58. Tomita T, Kobayashi M (1976) Differential effect of alpha- and beta-D-glucose on protection against alloxan toxicity in isolated islets. Biochem Biophys Res Commun 73: 791–798

    CAS  PubMed  Google Scholar 

  59. Tomita T, Lacy PE, Matschinsky FM, McDaniel ML (1974) Effect of alloxan on insulin secretion in isolated rat islets perifused in vitro. Diabetes 23: 517–524

    CAS  PubMed  Google Scholar 

  60. Zawalich W, Beidler LM (1973) Glucose and alloxan interactions in the pancreatic islets. Am J Physiol 224: 963–966

    CAS  PubMed  Google Scholar 

  61. Rossini AA, Arcangeli MA, Cahill GF (1975) Studies of alloxan toxicity on the beta cell. Diabetes 24: 516–522

    CAS  PubMed  Google Scholar 

  62. Rossini AA, Cahill GF, Jeanloz DA, Jeanloz RW (1975) Anomeric specificity of 3-O-methyl-D-glucopyranose against alloxan diabetes. Science 187: 70–71

    Google Scholar 

  63. Zawalich WS, Karl RC, Matschinsky FM (1979) Effects of alloxan on glucose-stimulated insulin secretion, glucose metabolism, and cyclic adenosine 3′, 5′-monophosphate levels in rat isolated islets of Langerhans. Diabetologia 16: 115–120

    Article  CAS  PubMed  Google Scholar 

  64. Weaver DC, McDaniel ML, Lacy PE (1978) Alloxan uptake by isolated rat islets of Langerhans. Endocrinology 102: 1847–1855

    CAS  PubMed  Google Scholar 

  65. Sehlin J (1981) Transport systems of islet cells. In: Cooperstein SJ, Watkins D (eds) The islet of Langerhans. Academic Press, New York, pp 53–74

    Google Scholar 

  66. Sener A, Malaisse-Lagae F, Malaisse WJ (1982) Noncarbohydrate nutrients protect against alloxan-induced inhibition of insulin release. Endocrinology 110: 2210–2212

    CAS  PubMed  Google Scholar 

  67. Lenzen S, Schmidt W, Panten U (1985) Transamination of neutral amino acids and 2-keto acids in the pancreatic B-cell mitochondria. J Biol Chem 260: 12629–12634

    CAS  PubMed  Google Scholar 

  68. Panten U (1987) Rapid control of insulin secretion from pancreatic islets. ISI Atlas of Science: Pharmacology 307–310

  69. Tomita T (1976) Effect of alloxan on arginine- and leucine-in- duced insulin secretion in isolated islets. FEBS Lett 72: 79–82

    Article  CAS  PubMed  Google Scholar 

  70. Henquin JC, Malvaux P, Lambert AE (1979) Alloxan-induced alteration of insulin release, rubidium efflux and glucose metabolism in rat islets stimulated by various secretagogues. Diabetologia 16: 253–260

    Article  CAS  PubMed  Google Scholar 

  71. Watkins D, Cooperstein SJ, Lazarow A (1964) Effect of alloxan on permeability of pancreatic islet tissue in vitro. Am J Physiol 207: 436–440

    CAS  PubMed  Google Scholar 

  72. Watkins D, Cooperstein SJ (1976) Effect of alloxan on islet tissue permeability: protection and reversal by dithiols. J Pharmacol Exp Ther 199: 575–572

    CAS  PubMed  Google Scholar 

  73. Griffiths M (1949) Inhibition of enzymatic transphosphorylation by alloxan and ninhydrin in tissue extracts. Arch Biochem 20: 451–456

    CAS  Google Scholar 

  74. Villar-Palasi C, Carballido A, Sols A, Arteta JL (1957) Sensitivity of pancreas hexokinase towards alloxan and its modification by glucose. Nature 180: 387–388

    CAS  PubMed  Google Scholar 

  75. Bhattacharya SK (1959) Inhibition of liver hexokinase by dehydroascorbic acid and alloxan. Science 184: 1638–1640

    CAS  Google Scholar 

  76. Colca JR, Kotagal N, Brooks CL, Lacy PE, Landt M, McDaniel ML (1983) Alloxan inhibition of a Ca2+- and calmodulin-de- pendent protein kinase activity in pancreatic islets. J Biol Chem 258: 7260–7263

    CAS  PubMed  Google Scholar 

  77. Boquist L (1984) Alloxan effects on mitochondria: study of oxygen consumption, fluxes of Mg2+, Ca2+, K+ and adenine nucleotides, membrane potential and volume change in vitro. Diabetologia 27: 379–386

    Article  CAS  PubMed  Google Scholar 

  78. Frei B, Winterhalter KH, Richter C (1985) Mechanism of alloxan-induced calcium release from rat liver mitochondria. J Biol Chem 260: 7394–7401

    CAS  PubMed  Google Scholar 

  79. Brown DJ (1962) The pyrimidines. In: Weissenberger A (ed) The chemistry of heterocyclic compounds. Interscience publishers, New York

    Google Scholar 

  80. Anderson CM, Stenkamp RE, Steitz TA (1978) Sequencing a protein by X-ray crystallography. II. Refinement of yeast hexokinase B co-ordinates and sequence at 2.1 Å resolution. J Mol Biol 123: 15–33

    CAS  PubMed  Google Scholar 

  81. Anderson CM, Stenkamp RE, McDonald R, Steitz TA (1978) A refined model of the sugar binding site of yeast hexokinase B. J Mol Biol 123: 207–219

    CAS  PubMed  Google Scholar 

  82. Connolly BA, Trayer IP (1979) Reaction of rat hepatic glucokinase with substrate-related and other alkylating agents. Eur J Biochem 99: 299–308

    Article  CAS  PubMed  Google Scholar 

  83. Connolly BA, Trayer IP (1979) Affinity labelling of rat-muscle hexokinase type II by a glucose-derived alkylating agent. Eur J Biochem 93: 375–385

    Article  CAS  PubMed  Google Scholar 

  84. Steitz TA, Anderson WF, Fletterick RJ, Anderson CM (1977) High resolution crystal structures of yeast hexokinase complexes with substrates, activators, and inhibitors. Evidence for an allosteric control site. J Biol Chem 252: 4494–4500

    CAS  PubMed  Google Scholar 

  85. McDaniel ML, Anderson S, Fink J, Roth C, Lacy PE (1975) Effect of alloxan on permeability and hexose transport in rat pancreatic islets. Endocrinology 97: 68–75

    CAS  PubMed  Google Scholar 

  86. Scheynius A, Täljedal I-B (1971) On the mechanism of glucose protection against alloxan toxicity. Diabetologia 7: 252–255

    Article  CAS  PubMed  Google Scholar 

  87. Weaver DC, Barry CD, McDaniel ML, Marshall GR, Lacy PE (1979) Molecular requirements for recognition at a glucoreceptor for insulin release. Mol Pharmacol 16: 361–368

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenzen, S., Panten, U. Alloxan: history and mechanism of action. Diabetologia 31, 337–342 (1988). https://doi.org/10.1007/BF02341500

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02341500

Keywords

Navigation