Skip to main content

Scanning Probe Based Nanolithography and Nanomanipulation on Graphene

  • Chapter
  • First Online:
Tip-Based Nanofabrication

Abstract

Alternative lithographic techniques, in particular those based on scanning probe microscopy, have shown a great potential for fabricating nanostructures using various material and allowing high spatial resolution, alignment capabilities and high-resolution imaging during the different lithographic steps. More specifically, atomic force microscope (AFM) and scanning tunneling microscope (STM) have been in the recent past employed to image and modify at nanometer scale a new carbon material discovered in 2004 and called graphene, a single layer of carbon atoms arranged in a honeycomb crystal lattice. In this chapter a review of recent results obtained by scanning probe based nanofabrication on graphene nanostructures is presented. It is focused in particular on nanomanipulation, local anodic oxidation (LAO), electrochemical or thermal-stimulated desorption, static or dynamic ploughing as well as other AFM and STM based techniques on imaging, lithography and spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscope

dI/dU, dI/dV:

Differential conductance

FLG:

Few layer graphene

GNR:

Graphene nano ribbons

GO:

Graphene oxide

GOepi :

Graphene oxide epitaxial

I-V:

Current-Voltage

KPM:

Kelvin probe microscopy

LAO:

Local anodic oxidation

LDOS:

Local density of states

NEMS:

Nano electro mechanical systems

SEM:

Scanning electron microscope

SGM:

Scanning gate microscopy

SLG:

Single layer graphene

SPL:

Scanning probe lithography

SPM:

Scanning probe microscopy

SPN:

Scanning probe nanomanipulation

SPS:

Scanning probe spectroscopy

STM:

Scanning tunneling microscope

TCNL:

Thermo chemical nano lithography

TERS:

Tip enhanced Raman scattering

UHV:

Ultra high vacuum

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, PNAS 102, 10451 (2005).

    Article  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  4. S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, Nano Lett. 7, 2707 (2007).

    Article  Google Scholar 

  5. T. W. Ebbesen and H. Hiura, Adv. Mater. 7, 582 (1995).

    Article  Google Scholar 

  6. X. K. Lu, M. F. Yu, H. Huang, and R. S. Ruoff, Nanotechnology 10, 269 (1999).

    Article  Google Scholar 

  7. Y. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Appl. Phys. Lett. 86, 073104 (2005).

    Article  Google Scholar 

  8. G. Binnig, H. Fuchs, Ch. Gerber, H. Rohrer, E. Stoll, and E. Tosatti, Europhys. Lett. 1, 31 (1986).

    Article  Google Scholar 

  9. S. Park and C. F. Quate, Appl. Phys. Lett. 48, 112 (1986).

    Article  Google Scholar 

  10. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  Google Scholar 

  11. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56(9), 930 (1986).

    Article  Google Scholar 

  12. B. Bhushan, Scanning Probe Microscopy in Nanoscience and Nanotechnology. Springer, Heidelberg (2010).

    Book  Google Scholar 

  13. M. Bowker and P. R. Davies, Scanning Tunneling Microscopy in Surface Science. Wiley, Weinheim (2010).

    Google Scholar 

  14. A. A. Tseng, A. Notargiacomo, and T. P. Chen, J. Vac. Sci. Technol. B 23, 877 (2005).

    Article  Google Scholar 

  15. P. Nemes-Incze, Z. Osvath, K. Kamaras, and L. P. Biró, Carbon 46, 1435, (2008).

    Article  Google Scholar 

  16. A. Fasolino, J. H. Los, and M. Katsnelson, Nat. Mater. 6, 858 (2007).

    Article  Google Scholar 

  17. C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, and T. Heinz, Nature 462, 339 (2009).

    Article  Google Scholar 

  18. D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009).

    Article  Google Scholar 

  19. M. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, Nat. Mater. 5, 33 (2006).

    Article  Google Scholar 

  20. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).

    Article  Google Scholar 

  21. G. F. Schneider, V. E. Calado, H. Zandbergen, L. M. K. Vandersypen, and C. Dekker, Nano Lett. 10, 1912 (2010).

    Article  Google Scholar 

  22. Z. Li, Z. Cheng, R. Wang, Q. Li, and Y. Fang, Nano Lett. 9(10), 3599 (2009).

    Article  Google Scholar 

  23. T. Hertel, R. Martel, and P. Avouris, J. Phys. Chem. B 102, 910 (1998).

    Article  Google Scholar 

  24. A. Wienssa and G. Persch-Schuy, Appl. Phys. Lett. 75, 1077 (1999).

    Article  Google Scholar 

  25. T. Banno, M. Tachiki, H. Seo, H. Umezawa, and H. Kawarada, Diam. Relat. Mater. 11, 387 (2002).

    Article  Google Scholar 

  26. I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, J. Vac. Sci. Technol. B 25(6), 2558 (2007).

    Article  Google Scholar 

  27. M. Poot and H. S. J. van der Zant, Appl. Phys. Lett. 92, 063111 (2008).

    Article  Google Scholar 

  28. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  Google Scholar 

  29. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).

    Article  Google Scholar 

  30. S. Shivaraman, R. A. Barton, X. Yu, J. Alden, L. Herman, M. V. S. Chandrashekhar, J. Park, P. L. McEuen, J. M. Parpia, H. G. Craighead, and M. G. Spencer, Nano Lett. 9, 3100 (2009).

    Article  Google Scholar 

  31. V. Singh, S. Sengupta, H. S. Solanki, R. Dhall, A. Allain, S. Dhara, P. Pant, and M. M. Deshmukh, Nanotechnology 21, 165204 (2010).

    Article  Google Scholar 

  32. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  Google Scholar 

  33. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8(8), 2458 (2008).

    Article  Google Scholar 

  34. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  35. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).

    Article  Google Scholar 

  36. S. S. Hong, W. Kundhikanjana, J. J. Cha, K. Lai, D. Kong, S. Meister, M. A. Kelly, Z.-X. Shen, and Y. Cui, Nano Lett. 10(8), 3118 (2010).

    Article  Google Scholar 

  37. A. J. M. Giesbers, U. Zeitler, S. Neubeck, F. Freitag, K. S. Novoselov, and J. C. Maan, Solid State Commun. 147, 366 (2008).

    Article  Google Scholar 

  38. S. Eilers and J. P. Rabe, Phys. Status Solidi B 246(11–12), 2527 (2009).

    Article  Google Scholar 

  39. G. Prakash, M. L. Bolen, R. Colby, E. A. Stach, M. A. Capano, and R. Reifenberger, New J. Phys. 12, 125009 (2010).

    Article  Google Scholar 

  40. G. Lu, X. Zhou, H. Li, Z. Yin, B. Li, L. Huang, F. Boey, and H. Zhang, Langmuir 26(9), 6164 (2010).

    Article  Google Scholar 

  41. J. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990).

    Article  Google Scholar 

  42. H. C. Day and D. R. Allee, Appl. Phys. Lett. 62, 2691 (1993).

    Article  Google Scholar 

  43. R. Garcia, R. V. Martinez, and J. Martinez, Chem. Soc. Rev. 35, 29 (2006).

    Article  Google Scholar 

  44. A. A. Tseng, A. Notargiacomo, and T. P. Chen, J. Vac. Sci. Technol. B 23, 877 (2005).

    Article  Google Scholar 

  45. L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Appl. Phys. Lett. 93, 093107 (2008).

    Article  Google Scholar 

  46. S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Appl. Phys. Lett. 94, 082107 (2009).

    Article  Google Scholar 

  47. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

    Article  Google Scholar 

  48. Y. Zhang, J. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).

    Article  Google Scholar 

  49. G. Rius, N. Camara, P. Godignon, and F. Pérez-Murano, J. Vac. Sci. Technol. B 27(6), 3149 (2009).

    Article  Google Scholar 

  50. J. H. Ye, F. Pérez-Murano, N. Barniol, G. Abadal, and X. Aymerich, J. Vac. Sci. Technol. B 13, 1423 (1995).

    Article  Google Scholar 

  51. G. Abadal, F. Pérez-Murano, N. Barniol, and X. Aymerich, Appl. Phys. A: Mater. Sci. Process. 66, S791 (1998).

    Article  Google Scholar 

  52. V. Tozzini and V. Pellegrini, Phys. Rev. B 81, 113404 (2010).

    Article  Google Scholar 

  53. M. H. F. Sluiter and Y. Kawazoe, Phys. Rev. B 68, 085410 (2003).

    Article  Google Scholar 

  54. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  Google Scholar 

  55. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009).

    Article  Google Scholar 

  56. Z. Wei, D. Wang, S. Kim, S. Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, Science 328, 1373 (2010).

    Article  Google Scholar 

  57. J. M. Mativetsky, E.Treossi, E. Orgiu, M. Melucci, G. P. Veronese, P. Samorì, and V. Palermo, J. Am. Chem. Soc. 132, 14130 (2010).

    Article  Google Scholar 

  58. M. Zhou, Y. L. Wang, Y. M. Zhai, J. F. Zhai, W. Ren, F. A. Wang, S. J. Dong, Chem. Eur. J. 15, 6116 (2009).

    Article  Google Scholar 

  59. P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, IBM J. Res. Develop. 44(3), 323 (2000).

    Article  Google Scholar 

  60. E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn, PNAS 104(22), 9209 (2007).

    Article  Google Scholar 

  61. M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7(6), 1644 (2007).

    Article  Google Scholar 

  62. G. Li, A. Luican, and E. Y. Andrei, Phys. Rev. Lett. 102, 176804 (2009).

    Article  Google Scholar 

  63. H. A. Mizes, S. Park, and W. A. Harrison, Phys. Rev. B 36, 4491 (1987).

    Article  Google Scholar 

  64. G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, and J. A. Stroscio, Science 317, 219 (2007).

    Article  Google Scholar 

  65. F. Varchon, P. Mallet, L. Magaud, and J.-Y. Veuillen, Phys. Rev. B 77, 165415 (2008).

    Article  Google Scholar 

  66. J. Wintterlin and M.-L. Bocquet, Surf. Sci. 603, 1841 (2009).

    Article  Google Scholar 

  67. Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, and H. Gao, Adv. Mater. 21(27), 2777 (2009).

    Article  Google Scholar 

  68. J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Nano Lett. 8(2), 565 (2008).

    Article  Google Scholar 

  69. A. L. Vázquez de Parga, F. Calleja, B. Borca, M. C. G. Passeggi, Jr., J. J. Hinarejos, F. Guinea, and R. Miranda, Phys. Rev. Lett. 100, 056807 (2008).

    Article  Google Scholar 

  70. N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zett, F. Guinea, A. H. Castro Neto, and M. F. Crommie, Science 329, 544 (2010).

    Article  Google Scholar 

  71. M. L. Teague, A. P. Lai, J. Velasco, C. R. Hughes, A. D. Beyer, M. W. Bockrath, C. N. Lau, and N. C. Yeh, Nano Lett. 9(7), 2543 (2009).

    Article  Google Scholar 

  72. L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Nature Nanotech. 3, 397 (2008).

    Article  Google Scholar 

  73. D. H. Kim, J. Y. Koo, and J. J. Kim, Phys. Rev. B 68, 113406 (2003).

    Article  Google Scholar 

  74. P. Sessi, J. R. Guest, M. Bode, and N. P. Guisinger, Nano Lett. 9(12), 4343 (2009).

    Article  Google Scholar 

  75. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, Nano Lett. 7(9), 2711 (2007).

    Article  Google Scholar 

  76. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  Google Scholar 

  77. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7(2), 238 (2007).

    Article  Google Scholar 

  78. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).

    Article  Google Scholar 

  79. Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, J. Raman Spectrosc. 40, 1434 (2009).

    Article  Google Scholar 

  80. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Nano Lett. 9(10), 3431 (2009).

    Article  Google Scholar 

  81. A. Verdaguer, M. Cardellach, J. J. Segura, G. M. Sacha, J. Moser, M. Zdrojek, A. Bachtold, and J. Fraxedas, Appl. Phys. Lett. 94, 233105 (2009).

    Article  Google Scholar 

  82. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, Nat. Phys. 4, 144 (2008).

    Article  Google Scholar 

  83. M. R. Connolly, K. L. Chiou, C. G. Smith, D. Anderson, G. A. C. Jones, A. Lombardo, A. Fasoli, and A. C. Ferrari, Appl. Phys. Lett. 96, 113501 (2010).

    Article  Google Scholar 

  84. K. Xu, P. Cao, and J. R. Heath, Science 329, 1188 (2010).

    Article  Google Scholar 

  85. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Muellen, and R. Fasel, Nature 466, 472 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasqualantonio Pingue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pingue, P. (2011). Scanning Probe Based Nanolithography and Nanomanipulation on Graphene. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics