Skip to main content

Identification from full-field measurements: a promising perspective in experimental mechanics

  • Conference paper
  • First Online:
Application of Imaging Techniques to Mechanics of Materials and Structures, Volume 4

Abstract

This paper deals with the use of full-field measurement techniques in experimental solid mechanics. The main techniques used in practice are briefly described and the different types of applications are classified according to their link with modelling. Finally, one these applications: identification of constitutive parameters from full-field measurements is developed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Post, D., Han, B., and lfju, P., High sensitivity moiré: experimental analysis for mechanics and materials, Springer- Verlag, New York, 1994

    Google Scholar 

  2. Jacquot P (2008) Speckle interferometry: A review of the principal methods in use for experimental mechanics applications. Strain 44:57–69

    Article  Google Scholar 

  3. Kujawinska M (1987) Use of phase-stepping automatic fringe analysis in moiré lnterferometry. Applied Optics 26:4712–4714

    Article  Google Scholar 

  4. Huntley JM, Saldner H (1993) Temporal phase unwrapping algorithm for automated interferogram analysis. Applied Optics 32:3047–3052

    Article  Google Scholar 

  5. Sutton M., Orteu J.-J., Schreier H. W., Image correlation for shape, motion and deformation measurements, Springer, 2009

    Google Scholar 

  6. Surrel Y., Fringe Analysis, in Photomechanics, Topics Appli. Phys. 77, P.K. Rastogi, 55-102, 2000,

    Google Scholar 

  7. Piro JL, Grédiac M (2004) Producing and transferring low-spatial-frequency grids for measuring displacement fields with moiré and grid methods. Experimental Techniques 28(4):23–26

    Article  Google Scholar 

  8. Moulart R, Rotinat R, Pierron F, Lerondel G (2007) On the realization of microscopic grids for local strain measurement by direct interferometric photolithography. Optics and Lasers in Engineering 45(12):1131–1147

    Article  Google Scholar 

  9. Badulescu C, Grédiac M, Mathias J-D (2009) Investigation of the grid method for accurate in-plane strain measurement. Measurement Science and Technology 20:095102

    Article  Google Scholar 

  10. Avril S, Feissel P, Pierron F, Villon P (2010) Comparison of two approaches for controlling the uncertainty in data differentiation: application to full-feild measurements in solid mechanics. Measurement Science and Technology 21:015703

    Article  Google Scholar 

  11. Buffiere J-Y, Maire E, Adrien J, Masse JP, Boller E (2010) In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics. Experimental Mechanics 50(3):289–305

    Article  Google Scholar 

  12. Journal of Strain Analysis for Engineering Design, special issue in honour of emeritus Professor P. Stanley: thermal techniques for stress analysis and damage assessment, 43(6), 2008

    Google Scholar 

  13. Chrysochoos A, Louche H (1998) Thermographic analysis of localization mechanisms in mild steels. Comptes Rendus Académie des Sciences Série II Fascicule B - Mécanique 326:345–352

    MATH  Google Scholar 

  14. Chrysochoos A, Louche H (2000) An infrared image processing to analyse the calorific effects accompanying strain localisation. International Journal of Engineering Science 38:1759–1788

    Article  Google Scholar 

  15. Grédiac M (2004) The use of full-field measurement methods in composite material characterization: interest and limitations. Composites Part A 35:751–761

    Article  Google Scholar 

  16. Vickstrom M, Backlund J, Olsson KA (1989) Non-destructive testing of sandwich construction using thermography. Composite Structures 13:49–65

    Article  Google Scholar 

  17. Dufort L., Grédiac M., Experimental evidence of parasitic effects in the shear test on sandwich beams, Experimental Mechanics, 42(2), pp. 186-193, Society for Experimental Mechanics, 2002

    Google Scholar 

  18. Pierron, F., Sutton M.A., Tiwari V., Ultra high speed DIC on a three point bending test mounted on a Hopkinson bar, in this volume.

    Google Scholar 

  19. Xing YM, Yun H, Dai FL (1999) An experimental study of failure mechanisms in laminates with dropped plies. Composite Science and Technology 59:1527–1531

    Article  Google Scholar 

  20. Réthoré J, Roux S, Hild F (2010) Hybrid analytical and extended finite element method (HAX-FEM): A new enrichment procedure for cracked solids. International Journal for Numerical Methods in Engineering 81(3):268–285

    Google Scholar 

  21. Dufort L, Grédiac M, Surrel Y (2001) Experimental evidence of the cross section warping in short composite beams under three point bending. Composite Structures 51:37–47

    Article  Google Scholar 

  22. Papila, M., Akgun, A., Niu X., Ifju P., Post-buckling of composite I sections. Part 2 : experimental validation, Journal of Composite Materials, 35(9), pp. 797-821, 2001

    Google Scholar 

  23. Avril S, Bonnet M, Bretelle AS, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco S, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Experimental Mechanics 48(4):381–402

    Article  Google Scholar 

  24. Molimard J, Le Riche R, Vautrin A, Lee JR (2005) Identification of the four orthotropic plate stiffnesses using a single open-hole tensile test. Experimental Mechanics 45(5):404–411

    Article  Google Scholar 

  25. Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2008) Identification of Mechanical Material Behavior Through Inverse Modeling and DIC. Experimental Mechanics 48(4):421–433

    Article  Google Scholar 

  26. Meuwissen MHH, Oomens CWJ, Baailens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. Journal of Materials Processing Technology 75:204–211

    Article  Google Scholar 

  27. Moës ES, Ladevèze P (1999) Douchin B, Constitutive relation error estimators for (visco)plastic finite element analysis with softening. Computational Methods in Applied Mechanical Engineering 176:247–264

    Article  MATH  Google Scholar 

  28. Latourte F, Chrysochoos A, Pagano S, Wattrisse B (2008) Elastoplastic behavior identification for heterogeneous loadings and materials. Experimental Mechanics 48(4):435–449

    Article  Google Scholar 

  29. Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields. International Journal for Numerical Methods in Engineering 61:189–208

    Article  MATH  Google Scholar 

  30. Crouzeix L, Perie JN, Collombet F, Douchin B (2009) An orthotropic variant of the equilibrium gap method applied to the analysis of a biaxial test on a composite material. Composites/Part A 40(11):1732–1740

    Article  Google Scholar 

  31. Dym CL, Shames IH (1973) Solid Mechanics: A Variational Approach. McGraw-Hill Book Company, Inc, New York

    Google Scholar 

  32. Grédiac M (1989) Principe des travaux virtuels et identification. Comptes Rendus Mécanique 309:1–3

    MATH  Google Scholar 

  33. Avril S, Grédiac M, Pierron F (2004) Sensitivity of the virtual fields method to noisy data. Computational Mechanics 34:439–452

    Article  MATH  Google Scholar 

  34. Grédiac M, Pierron F, Avril S, Toussaint E (2006) The Virtual Fields Method for extracting constitutive parameters from full-field measurements: a review. Strain 42:233–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Grédiac, M. (2013). Identification from full-field measurements: a promising perspective in experimental mechanics. In: Proulx, T. (eds) Application of Imaging Techniques to Mechanics of Materials and Structures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9796-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9796-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9528-5

  • Online ISBN: 978-1-4419-9796-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics