Skip to main content

Chemical-Based Fecal Source Tracking Methods

  • Chapter
  • First Online:
Microbial Source Tracking: Methods, Applications, and Case Studies

Abstract

A useful source tracking approach that has emerged over the past few years involves detection of human-specific chemicals found in wastewaters and septage. Chemicals specific to human wastewaters offer some potential advantages over biologically based methods: they are generally faster to prepare and analyze; they are more source-specific because they are not confounded by regrowth in the environment; and chemicals may be more geographically and temporally stable. However, chemicals have received less scrutiny to date, often require specialized equipment, and sample processing is usually more expensive. Additionally, many chemicals specific to human waste streams may occur at concentrations low enough to be diluted below detection limits once the waste stream enters the ambient environment. This chapter describes the different classes of wastewater chemicals and explores the advantages, disadvantages of each as potential source tracking candidates. While no single chemical has emerged as the best, there are several viable candidates for source tracking applications. For initial water sample screenings, optical brighteners (OBs) in detergents have shown considerable promise. Although not as sensitive as most microbial assessments, OBs can be measured with a handheld fluorometer, providing near real-time and relatively inexpensive tracking of signals in the field if the sample contains an OB concentration large enough to produce a measurable signal. Fecal sterols and stanols have been found to work best for source attribution, correlating with fecal indicator bacteria and providing discrimination between humans and several other fecal sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, D.C

    Google Scholar 

  • Binzcik GA, Gates JL, Gray Jr. LE, et al (2004) Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow. Environ. Health Perspectives 112: 353–358

    Google Scholar 

  • Blanch AR, Belanche-Munoz L, Bonjoch X, et al (2006) Integrated analysis of established and novel microbial and chemical methods for microbial source tracking. Appl. Environ. Microbiol. 72: 5915–5926

    Article  PubMed  CAS  Google Scholar 

  • Boehm AB, Ashbolt NJ, Colford JM, et al (2009) A sea change ahead for recreational water quality criteria. J. Water & Health. 7: 9–20

    Article  Google Scholar 

  • Bolz U, Hagenmaiser H & Komer W (2001) Phenolic xenoestrogens in surface water, sediments, and sewage sludge from Baden-Wurttemberg, south-west Germany. Environ. Pollut. 115: 291–301

    Article  PubMed  CAS  Google Scholar 

  • Boving TB, Meritt DL & Boothroyd JC (2004) Fingerprinting sources of bacterial input into small residential watersheds: Fate of fluorescent whitening agents. Environ. Geol. 46: 228–232

    Article  CAS  Google Scholar 

  • Brun GL, Bernier M, Losier R, et al (2006) Pharmaceutically active compounds in Atlantic Canadian sewage treatment plant effluents and receiving waters, and potential for environmental effects as measured by acute and chronic aquatic toxicity. Environ. Toxicol. Chem. 25: 2163–2176

    Article  PubMed  CAS  Google Scholar 

  • Buerge IJ, Buser HR, Muller MD, et al (2003a) Behavior of the polycyclic musks HHCB and AHTN in lakes, two potential anthropogenic markers for domestic wastewater in surface waters. Environ. Sci. Technol. 37: 5636–5644

    Article  PubMed  CAS  Google Scholar 

  • Buerge IJ, Poiger T, Muller MD, et al (2003b) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ. Sci. Technol. 37: 691–700

    Article  PubMed  CAS  Google Scholar 

  • Buerge IJ, Buser H-R, Kahle M, et al (2009) Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: An ideal chemical marker of domestic wastewater in groundwater. Environ. Sci. Technol. 43: 4381–4385

    Article  PubMed  CAS  Google Scholar 

  • Bull ID, Lockheart MJ, Elhmmali MM, et al (2002) The origin of faeces by means of biomarker detection. Environ. Int. 27: 647–654

    Article  PubMed  CAS  Google Scholar 

  • Bull ID, Elhmmali MM, Roberts DJ, et al (2003) The application of steroidal biomarkers to track the abandonment of a roman wastewater course at the Agora (Athens, Greece). Archaeometry 45: 149–161

    Article  CAS  Google Scholar 

  • Buser HR, Poiger T & Muller MD (1999) Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater Environ. Sci. Technol. 33: 2529–2535

    Article  CAS  Google Scholar 

  • Cao Y, Griffith JF & Weisberg SB (2009) Evaluation of optical brightener photodecay characteristics for detection of human fecal contamination. Water Res. 43: 2273–2279

    Article  PubMed  CAS  Google Scholar 

  • Chan KH, Lam MHW, Poon KF, et al (1998) Application of sedimentary fecal stanols and sterols in tracing sewage pollution in coastal water. Water Res. 32: 225–235

    Article  CAS  Google Scholar 

  • Chen Z, Pavelic P, Dillon P, et al (2002) Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Res. 36: 4830–4838

    Article  PubMed  CAS  Google Scholar 

  • Clara M, Strenn B & Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Res. 38: 947–954

    Article  PubMed  CAS  Google Scholar 

  • Close ME, Hodgson LR & Tod G 1989 Field evaluation of fluorescent whitening agents and sodium tripolyphosphate as indicators of septic tank contamination in domestic wells. N. Z. J. Mar. & Fresh. Res. 23: 563–568

    Article  CAS  Google Scholar 

  • da Costa RL & Carreira RS (2005) A comparison between faecal sterols and coliform counts in the investigation of sewage contamination in sediments. Braz. J. Oceanogr. 53: 157–167

    Google Scholar 

  • Devane M, Saunders D, Gilpin B (2006) Faecal sterols and fluorescent whiteners as indicators of the source of faecal contamination. Chemistry in New Zealand 70: 74–77

    CAS  Google Scholar 

  • Dickerson JW Jr., Hagedorn C & Hassall A (2007) Detection and remediation of human-origin pollution at two public beaches in Virginia using multiple source tracking methods. Water Res. 41: 3758–3770

    Article  PubMed  CAS  Google Scholar 

  • Dixon LK, Taylor HM, Staugler E, et al (2005) Development of a fluorescence method to detect optical brighteners in the presence of varying concentrations of fluorescent humic substances: identifying regions in influenced by OSTDS in the estuarine waters of Charlotte Harbor. Mote Marine Laboratory Technical Report No. 1045

    Google Scholar 

  • Edwards DD, McFeters GA & Venkatesan MI (1998) Distribution of Clostridium perfringens and fecal sterols in a benthic coastal marine environment influenced by the sewage outfall from McMurdo Station, Antarctica. Appl. Environ. Microbiol. 64: 2596–2600

    CAS  Google Scholar 

  • Elhmmali MM, Roberts DJ & Evershed RP (2000) Combined analysis of bile acids and sterols/stanols from riverine particulates to assess sewage discharges and other fecal sources. Environ. Sci. Technol. 34: 39–46

    Article  CAS  Google Scholar 

  • Evershed RP & Bethell PH (1996) Application of multimolecular biomarker techniques to the identification of faecal material in archaeological soils and sediments. ACS Symp. Ser. 625: 157–172

    Article  CAS  Google Scholar 

  • Fent K, Weston AA & Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76: 122–159

    Article  PubMed  CAS  Google Scholar 

  • Fono LJ & Sedlack DL (2005) Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters. Environ. Sci. Technol. 39: 9244–9252

    Article  PubMed  CAS  Google Scholar 

  • Gilpin BJ, Gregor JE & Savill MG (2002) Identification of the source of faecal pollution in contaminated rivers. Water Sci. Technol. 46: 9–15

    CAS  Google Scholar 

  • Glassmeyer ST, Furlong ET, Kolpin DW, et al (2005) Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ. Sci. Technol. 39: 5157–5169

    Article  PubMed  CAS  Google Scholar 

  • Gregor J, Garrett N, Gilpin B, et al (2002) Use of classification and regression tree (CART) ­analysis with chemical faecal indicators to determine sources of contamination. N. Z. J. Marine & Freshwater Res. 36: 387–398

    Article  CAS  Google Scholar 

  • Grimalt JO, Fernandez P, Bayona JM, et al (1990) Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environ. Sci. Technol. 24: 357–63

    Article  CAS  Google Scholar 

  • Haack SK, Duris JW, Fogarty LR, et al (2009) Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators. J. Environ. Qual. 38: 248–258

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn C, Reneau Jr. RB, Saluta M, et al (2003) Impact of onsite wastewater systems on water quality in coastal regions. Virginia Coastal Resources Management Program Memorandum of Agreement 50312-01-13-PT. Virginia Dept. of Conservation and Recreation, Richmond, VA

    Google Scholar 

  • Hagedorn C, Saluta M, Hassall A, et al (2005a) Fluorometric detection of optical brighteners as an indicator of human sources of water pollution. Part I. Description and detection of optical brighteners. Crop & Soil Environmental News. online http://filebox.vt.edu/users/chagedor/biol_4684/BST/OB%20Article-I.pdf (accessed 6/24/09)

  • Hagedorn C, Saluta M, Hassall A, et al (2005b) Fluorometric detection of optical brighteners as an indicator of human sources of water pollution. Part II. Development as a source tracking methodology in open waters. Crop & Soil Environmental News. online http://filebox.vt.edu/users/chagedor/biol_4684/BST/OB%20Article-II.pdf (accessed 6/24/09)

  • Hagedorn, C., and S.B. Weisberg. 2009. Development of chemical-based fecal source tracking methods. Rev. Environ. Sci. Bio/Technol. 8: 275–287

    Article  CAS  Google Scholar 

  • Hartel PG, Hagedorn C, McDonald JL, et al (2007) Exposing water samples to ultraviolet light improves fluorometry for detecting human fecal contamination. Water Res. 41: 3629–3642

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Managaki S & Takada H (2002) Fluorescent whitening agents in Tokyo Bay and adjacent rivers: their application as anthropogenic molecular markers in coastal environments. Environ. Sci. Technol. 36: 3556–3563

    Article  PubMed  CAS  Google Scholar 

  • Hilton HJ & Thomas KV (2003) Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr A. 1015: 129–141

    Article  PubMed  CAS  Google Scholar 

  • Isobe KO, Tarao M, Chiem NH, Minh LY, et al (2004) Effect of environmental factors on the relationship between concentrations of coprostanol and fecal indicator bacteria in tropical (Mekong Delta) and temperate (Tokyo) freshwaters. Appl. Environ. Microbiol. 70: 814–821

    Article  PubMed  CAS  Google Scholar 

  • Johnson A, Carey B & Golding S (2004) Results of a screening analysis for pharmaceuticals in wastewater treatment plant effluents, wells, and creeks in the Sequim-Dungeness area. Environmental Assessment Program, Olympia, Washington 98504-7710. Publication No: 04-03-051

    Google Scholar 

  • Katz BG, Griffin DW & Davis JH (2009) Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators. Sci. of the Total Environment 407: 2872–2886

    Article  CAS  Google Scholar 

  • Kramer JB, Canonica S & Hoigne J (1996) Degradation of fluorescent whitening agents in sunlit natural waters. Environ. Sci. Technol. 30: 2227–2234

    Article  CAS  Google Scholar 

  • LeBlanc LA, Latimer JS, Ellis JT, et al (1992) The geochemistry of coprostanol in waters and surface sediments from Narragansett Bay. Estuarine, Coastal and Shelf Sci. 34: 439–458

    Article  CAS  Google Scholar 

  • Leeming R & Nichols PD (1996) Concentration of coprostanol that corresponds to existing bacterial indicator guideline limits. Water Res. 30: 2997–3006

    Article  CAS  Google Scholar 

  • Leeming R, Ball A, Ashbolt N, et al (1996) Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res. 30: 2893–2900

    Article  CAS  Google Scholar 

  • Leeming R, Latham V, Rayner M, et al (1997) Detecting and distinguishing sources of sewage pollution in Australian inland and coastal waters and sediments. ACS Symp. Ser. 671: 306–319

    Article  CAS  Google Scholar 

  • MacDonald IA, Bokkenheuser VD, Winter J, et al (1983) Degradation of fecal sterols in the human gut. J. Lipid Res. 24: 675–694

    PubMed  CAS  Google Scholar 

  • Maldonaldo C, Dachs J & Bayona JM (1999) Trialkylamines and coprostanol as tracers of urban pollution in waters from enclosed seas: The Mediterranean and Black Sea. Environ. Sci. Technol. 33: 3290–3296

    Article  Google Scholar 

  • McDonald JL, Hartel PG, Gentit LC, et al (2006) Identifying sources of fecal contamination ­inexpensively with targeted sampling and bacterial source tracking. J. Environ. Qual. 35: 889–897

    Article  PubMed  CAS  Google Scholar 

  • Mudge, S.M., Lintern, D., (1999) Comparison of sterol biomarkers for sewage with other measures in Victoria Harbour, BC, Canada. Estuarine. Coastal and Shelf Science, 48: 27–38

    Article  Google Scholar 

  • Murtaugh, J.J., Bunch, R.L., (1967) Sterols as a measure of fecal pollution. J. Wat. Pollut. Control Fed., 39: 404–409

    CAS  Google Scholar 

  • Nakada N, Kiri K, Shinohara H, et al (2008) Evaluation of pharmaceuticals and personal care products as water-soluble markers of sewage. Environ. Sci. Technol. 42: 6347–6353

    Article  PubMed  CAS  Google Scholar 

  • Noblet JA, Young DL, Zeng EY, et al (2004) Use of fecal steroids to infer the sources of fecal indicator bacteria in the Lower Santa Ana River Watershed, California: sewage is unlikely a significant source. Environ. Sci. Technol. 38: 6002–6008

    Article  PubMed  CAS  Google Scholar 

  • Paxéus N & Schröder HF (1996) Screening for non-regulated organic compounds in municipal wastewater in Göteborg, Sweden. Water Sci. Technol. 33: 9–15

    Article  Google Scholar 

  • Peeler KA, Opsahl SP & Chanton JP (2006) Tracking anthropogenic inputs using caffeine, indicator bacteria, and nutrients in rural freshwater and urban marine systems. Environ. Sci. Technol. 40: 7616–7622

    Article  PubMed  CAS  Google Scholar 

  • Pond KR, Rangdale R, Meijer WG, et al (2004) Workshop Report: Developing pollution source tracking for recreational and shellfish waters. Environ. Forensics 5: 237–247

    Article  Google Scholar 

  • Poiger T, Field JA, Field TM, et al (1998) Behavior of fluorescent whitening agents during sewage treatment. Water Res. 32: 1939–1947

    Article  CAS  Google Scholar 

  • Rangdale RE, Meijer W, Rincé A, et al (2003) Development of methods for pollution source tracking-consolidated literature review. Completed for Environment Agency North West Region INTERREG IIIB Atlantic Area Programme Improved Coastal & Recreational Waters (ICReW)

    Google Scholar 

  • Reeves AD, Patton D (2001) Measuring change in sterol input to estuarine sediments. Physics and Chemistry of the Earth Part B: Hydrology Oceans and Atmosphere 26: 753

    Article  Google Scholar 

  • Roberts PH & Thomas KV (2006) The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total Environ. 56: 143–53

    Article  Google Scholar 

  • Sankararamakrishnan N & Guo Q (2005) Chemical tracers as indicator of human fecal coliforms at storm water outfalls. Environ. Intern. 31: 1133–1140

    Article  CAS  Google Scholar 

  • Scott TM, Rose JB, Jenkins TM, et al (2002) Microbial source tracking: current methodology and future directions. Appl. Environ. Microbiol. 68: 5796–5803

    Article  PubMed  CAS  Google Scholar 

  • Seiler RL, Zaugg SD, Thomas JM, et al (1999) Caffeine and pharmaceuticals as indicators of wastewater contamination in wells. Ground Water 37: 405–410

    Article  CAS  Google Scholar 

  • Seurinck S, Verstraete W & Siciliano SD (2005) Microbial source tracking for identification of fecal pollution. Rev. Environ. Sci. Bio/Technol. 4: 19–37

    Article  CAS  Google Scholar 

  • Siegener R & Chen RF (2002) Caffeine in Boston Harbor seawater. Mar. Pollut. Bull. 44: 3–387

    Article  PubMed  CAS  Google Scholar 

  • Shah VG, Dunstan RH, Geary PM, et al (2007) Evaluating potential applications of fecal sterols in distinguishing sources of faecal contamination from mixed faecal samples. Water Res. 41: 3667–3674

    Article  PubMed  CAS  Google Scholar 

  • Shu WC & Ding WH (2005) Determination of fluorescent whitening agents in laundry detergents and surface waters by solid-phase extraction and ion-pair high-performance liquid chromatography. J. Chromatography A 1–2: 218–223

    Google Scholar 

  • Stoeckel DM & Harwood VJ (2007) Performance, design, and analysis in microbial source tracking studies. Appl. Environ. Microbiol. 73: 2405–2415

    Article  PubMed  CAS  Google Scholar 

  • Temes TA, Andersen H, Gilberg D, et al (2002) Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Anal. Chem. 74: 3498–3504

    Article  PubMed  Google Scholar 

  • Thomas KV & Hilton MJ (2004) The occurrence of selected human pharmaceutical compounds in UK estuaries. Mar. Pollut. Bull. 49: 436–444

    Article  PubMed  CAS  Google Scholar 

  • Tolosa I, LeBlond N, Copin-Montégut C, et al (2003) Distribution of sterol and fatty alcohol biomarkers in particulate matter from the frontal structure of the Alboran Sea (SW Mediterranean Sea). Marine Chem. 82: 161–183

    Article  CAS  Google Scholar 

  • Tyagi Punam, Dwayne R Edwards & Mark S Coyne (2009) Fecal sterol and bile acid biomarkers: runoff concentrations in animal waste-amended pastures. Water Air Soil Pollut. 198: 45–54

    Google Scholar 

  • USEPA (2007) Experts Scientific Workshop on Critical Research Needs for the Development of New or Revised Recreational Water Quality Criteria. EPA 823-R-07-006; June 2007, online http://www.epa.gov/waterscience/criteria/recreation/experts/index.html

  • Weigel S, Berger U, Jensen E, et al (2004) Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere 56: 583–592

    Article  PubMed  CAS  Google Scholar 

  • Wolfe TM (1995) A comparison of fecal coliform densities and fluorescent intensities in Murrells Inlet, a highly urbanized estuary and in North Inlet, a pristine forested estuary. M.S. thesis. University of South Carolina, Columbia

    Google Scholar 

  • Wu J, Yue J, Hu R, et al (2008.) Use of caffeine and human pharmaceutical compounds to identify sewage contamination. Proc. World Acad. Sci. Eng. & Tech. 34: 2070–3740

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Hagedorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hagedorn, C., Weisberg, S.B. (2011). Chemical-Based Fecal Source Tracking Methods. In: Hagedorn, C., Blanch, A., Harwood, V. (eds) Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9386-1_8

Download citation

Publish with us

Policies and ethics